Redis(性能管理、主从复制、哨兵模式)概述及部署
目录
一、性能管理
1、查看Redis内存使用
2、内存碎片率
3、跟踪内存碎片率
4、内存使用率
5、内回收key
二、Redis集群有三种模式
三、Redis主从复制
1、主从复制的概念
2、主从复制的作用
3、主从复制的流程
4、搭建Redis主从复制
1.环境准备
2.安装Redis(所有主机)
3.修改Redis配置文件(Master节点)
4.修改Redis配置文件(slave节点操作)
5.验证主从效果
四、Redis哨兵模式
1、哨兵模式的原理
2、哨兵模式的作用
3、哨兵结构由两部分组成,哨兵节点和数据节点
4、故障转移机制
5、主节点选举
6、搭建Redis哨兵模式
1.环境准备
2.修改 Redis 哨兵模式的配置文件(所有节点操作)
3.启动哨兵模式
4.查看哨兵信息
5.故障模拟
6.小结
总结:
1、主从复制
2、哨兵模式
一、性能管理
1、查看Redis内存使用
192.168.10.100:6379> info memory ###查看redis内存使用情况
# Memory
used_memory:853320
used_memory_human:833.32K
......
2、内存碎片率
操作系统分配的内存值 used_memory_rss 除以 Redis 使用的内存总量值 used_memory 计算得出。
内存值 used_memory_rss 表示该进程所占物理内存的大小,即为操作系统分配给 Redis 实例的内存大小。
除了用户定义的数据和内部开销以外,used_memory_rss 指标还包含了内存碎片的开销, 内存碎片是由操作系统低效的分配/回收物理内存导致的(不连续的物理内存分配)。
举例来说:Redis 需要分配连续内存块来存储 1G 的数据集。如果物理内存上没有超过 1G 的连续内存块, 那操作系统就不得不使用多个不连续的小内存块来分配并存储这 1G 数据,该操作就会导致内存碎片的产生。
3、跟踪内存碎片率
跟踪内存碎片率对理解Redis实例的资源性能是非常重要的:
- 内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低,也说明 Redis 没有发生内存交换。
- 内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150%,其中50%是内存碎片率。需要在redis-cli工具上输入shutdown save 命令,让 Redis 数据库执行保存操作并关闭 Redis 服务,再重启服务器。
- 内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少 Redis 内存占用。
4、内存使用率
redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。
避免内存交换发生的方法:
- 针对缓存数据大小选择安装 Redis 实例
- 尽可能的使用Hash数据结构存储
- 设置key的过期时间
5、内回收key
内存清理策略,保证合理分配redis有限的内存资源。
达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。
配置文件中修改maxmemory-policy属性值:
vim /etc/redis/6379.conf
--598--
maxmemory-policy noenviction
●volatile-lru:使用LRU算法从已设置过期时间的数据集合中淘汰数据(移除最近最少使用的key,针对设置了TTL的key)
●volatile-ttl:从已设置过期时间的数据集合中挑选即将过期的数据淘汰(移除最近过期的key)
●volatile-random:从已设置过期时间的数据集合中随机挑选数据淘汰(在设置了TTL的key里随机移除)
●allkeys-lru:使用LRU算法从所有数据集合中淘汰数据(移除最少使用的key,针对所有的key)
●allkeys-random:从数据集合中任意选择数据淘汰(随机移除key)
●noenviction:禁止淘汰数据(不删除直到写满时报错)
属性 | 含义 |
---|---|
volatile-lru | 使用LRU算法从已设置过期时间的数据集合中淘汰数据 |
volatile-ttl | 从已设置过期时间的数据集合中挑选即将过期的数据淘汰 |
volatile-random | 从已设置过期时间的数据集合中随机挑选数据淘汰 |
alkeys-lru | 使用LRU算法从所有数据集合中淘汰数据 |
allkeys-random | 从数据集合中任意选择数据淘汰 |
noenviction | 禁止淘汰数据 |
二、Redis集群有三种模式
redis群集有三种模式,分别是主从同步/复制、哨兵模式、Cluster,下面会讲解一下三种模式的工作方式,以及如何搭建cluster群集
- 主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。
- 缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
- 哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。
- 缺陷:写操作无法负载均衡;存储能力受到单机的限制;哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。
- 集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。
三、Redis主从复制
1、主从复制的概念
主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。
默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。
2、主从复制的作用
- 数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
- 故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
- 负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
- 高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。
3、主从复制的流程
- 若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。
- 无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。
- 后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。
- Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Mater同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。
4、搭建Redis主从复制
1.环境准备
主机 | ip地址 |
---|---|
Master节点 | 192.168.10.100 |
Slave1节点 | 192.168.10.101 |
Slave2节点 | 192.168.10.102 |
2.安装Redis(所有主机)
首先给每台主机添加域名
vim /etc/hosts ##配置域名、地址192.168.10.100 redis-master
192.168.10.101 redis-slave1
192.168.10.102 redis-slave2
systemctl stop firewalld
setenforce 0
yum install -y gcc gcc-c++ make
cd /opt/
tar zxvf redis-5.0.7.tar.gz
cd /opt/redis-5.0.7/
make
make PREFIX=/usr/local/redis install
cd /opt/redis-5.0.7/utils
./install_server.sh
#请按四次回车,
3.修改Redis配置文件(Master节点)
vim /etc/redis/6379.conf ##配置文件路径bind 0.0.0.0 ##70行, 修改监听地址为0.0.0.0
daemonize yes ##137行,开启守护进程
logfile /var/log/redis_6379.log ##172行,指定日志文件目录
dir /var/lib/redis/6379 ##264行,指定工作目录
appendonly yes ##700行,开启AOF持久化功能
/etc/init.d/redis_6379 restart ##重启服务
4.修改Redis配置文件(slave节点操作)
vim /etc/redis/6379.conf ##配置文件路径(slave1和slave2同时操作)bind 0.0.0.0 ##70行, 修改监听地址为0.0.0.0
daemonize yes ##137行,开启守护进程
logfile /var/log/redis_6379.log ##172行,指定日志文件目录
dir /var/lib/redis/6379 ##264行,指定工作目录
replicaof 192.168.10.100 6379 ##288行,指定要同步的master节点ip和端口号
appendonly yes ##700行,开启AOF持久化功能
5.验证主从效果
在Master节点上看 日志
在Master节点上验证从节点
创建数据验证
四、Redis哨兵模式
主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。
哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。
1、哨兵模式的原理
哨兵(sentinel):是一个分布式系统,用于对主从结构中的每台服务器进行监控,当出现故障时通过投票机制选择新的 Master并将所有slave连接到新的 Master。所以整个运行哨兵的集群的数量不得少于3个节点。
2、哨兵模式的作用
- 监控:哨兵会不断地检查主节点和从节点是否运作正常。
- 自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。
- 通知(提醒):哨兵可以将故障转移的结果发送给客户端。
3、哨兵结构由两部分组成,哨兵节点和数据节点
- 哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
- 数据节点:主节点和从节点都是数据节点。
哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式,
所有节点上都需要部署哨兵模式,哨兵模式会监控所有的Redis 工作节点是否正常,
当Master 出现问题的时候,因为其他节点与主节点失去联系,因此会投票,
投票过半就认为这个 Master 的确出现问题,然后会通知哨兵间,
然后从Slaves中选取一个作为新的 Master。
4、故障转移机制
- 由哨兵节点定期监控发现主节点是否出现了故障每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。
- 当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。
- 由leader哨兵节点执行故障转移,过程如下:
- 将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
- 若原主节点恢复也变成从节点,并指向新的主节点;
- 通知客户端主节点已经更换。
需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。
一、哨兵对主从复制集群进行监控
监控对象:‘所有redis数据节点’二、哨兵与哨兵之间进行相互监控
监控对象:‘哨兵彼此’三、监控目的
3.1哨兵与哨兵之间的监控目的:检测彼此的存活状态
3.2哨兵监控所有的redis数据库的目的:为了实现故障自动故障切换
故障切换原理
① 当master挂掉,哨兵及时发现,发现之后 进行投票机制,选举出一个新的master服务器(一定是基数)
② 当完成了slave--->master的从 向主进行切换
③ 完成其他的从服务器对新的master进行修改配置
5、主节点选举
- 过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
- 选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
- 选择复制偏移量最大,也就是复制最完整的从节点。
哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式
6、搭建Redis哨兵模式
1.环境准备
主机 | ip地址 |
---|---|
Master节点 | 192.168.10.100 |
Slave1节点 | 192.168.10.101 |
Slave2节点 | 192.168.10.102 |
systemctl stop firewalld ##关闭防火墙
systemctl disable firewalld ##开机不自启
setenforce 0 ##关闭核心防护
2.修改 Redis 哨兵模式的配置文件(所有节点操作)
######三台修改一样的配置文件及内容##########cd /opt/redis-5.0.7/cp sentinel.conf sentinel.conf.bak ##先将配置文件备份一份,以免后面出错vim /opt/redis-5.0.7/sentinel.confprotected-mode no ##17行, 去掉前面的注释,关闭保护模式
port 26379 ##21行, Redis哨兵默认的监听端口
daemonize yes ##26行, 指定sentinel为后台启动
pidfile /var/run/redis-sentinel.pid ##31行, 指定pid文件
logfile "/var/log/sentinel.log" ##36行, 指定日志存放路径
dir /var/lib/redis/6379 ##65行, 指定数据库存放路径
sentinel monitor mymaster 192.168.10.100 6379 2 ##84行, 修改 指定该哨兵节点监控192.168.10.100 6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
sentinel down-after-milliseconds mymaster 30000 ##113行,判定服务器down掉的时间周期,默认为30000毫秒(30秒)
sentinel failover-timeout mymaster 180000 ##146行,故障节点的最大超时时间为180000毫秒(180秒)
3.启动哨兵模式
注意:先启master,再启slave
cd /opt/redis-5.0.7/
redis-sentinel sentinel.conf & ##使用后台方式启动
ps -ef|grep redis
4.查看哨兵信息
redis-cli -p 26379 info Sentinel
5.故障模拟
查看并杀死master节点的redis-server
ps -ef |grep redis
kill -9 1864
再次查看哨兵信息
redis-cli -p 26379 info sentinel ##查看哨兵信息
也可以在日志查看
tail -f /var/log/sentinel.log
6.小结
哨兵模式基于主从复制,但主从复制在单点故障后无法自动恢复,导致服务无法实现高可用性;
哨兵模式基于主从复制基础之上,添加哨兵节点检测,
当master宕机后,哨兵节点会通过投票选举方式,选举出新的master服务,保证服务的高可用性
总结:
1、主从复制
redis主从复制 是为了数据冗余和读写分离
在这两种模式中,有两种角色主节点(master)和从节点(slave),主节点负责处理写的操作
并将数据更改复制到一个或多个从节点。
这样我们的主节点负载减轻,从节点可以提供数据读取服务,实现读写分离,如果主节点停止服务,从节点之一可以立即接管主节点的角色,再继续提供服务
- 从节点启动成功连接主节点后,发送一个sync命令
- 主节点接受到sync的命令后开始在后台保存快照,同时,它也开始记录接收到rsnc后所有执行写的命令,快照完成后会将这个快照文件发送给从节点。
- 从节点收到快照文件之后开始载入,并持续接受主节点发送过来的新的写命令执行
- 总的来说 通过主从复制,redis 能够实现数据的备份(master 产生的数据能slave备份),负责均衡(读操作可以分摊到slave上去)和高可用(master宕机后,可以由slave进行故障切换)
2、哨兵模式
哨兵是一个高可用的行解决方案 官方认可 默认模式
- 监控:redis 哨兵 会持续监控master和slave实例是否正常运行
- 通知:如某个redis实例有问题,哨兵可以通过API向管理员或者其他应用发信通知
- 自动故障转移:如果master节点不工作,哨兵会开始故障转移的过程,选择一个slave节点晋升为新的master,其他剩余slave的节点会被重新配置为新的master节点的slave
- 配置提供服务:客户端可以使用哨兵来查询被认证的master节点该master节点的目录所有的slave节点
redis 哨兵是一个用于管理多个reids服务的系统,它提供监控、通知、自动故障转移、配置提供服务的功能,以实现redis高可用性
相关文章:

Redis(性能管理、主从复制、哨兵模式)概述及部署
目录 一、性能管理 1、查看Redis内存使用 2、内存碎片率 3、跟踪内存碎片率 4、内存使用率 5、内回收key 二、Redis集群有三种模式 三、Redis主从复制 1、主从复制的概念 2、主从复制的作用 3、主从复制的流程 4、搭建Redis主从复制 1.环境准备 2.安装Redis&#…...

LabVIEW挖坑指南
一、挖坑指南 1.1、输出变量放在条件框内 错误写法: 现象:如果没进入对应的分支,输出为默认值 正常写法: 让每个分支输出的值都在预料之内。 1.2、统计耗时不准 错误写法 现象:统计出来的耗时是2000ms 正常写法&a…...

docker容器环境安装记录(MAC M1)(完善中)
0、背景 在MAC M1中搭建商城项目环境时,采用docker统一管理开发工具,期间碰到了许多环境安装问题,做个总结。 1、安装redis 在宿主机新建redis.conf文件运行创建容器命令,进行容器创建、端口映射、文件挂载、以指定配置文件启动…...

Linux 常用命令(持续更新中...)
1. ls 查看文件列表命令 语法: ls [-a -l -h] [Linux路径] -a -l -h 是可选的选项 (-h需配合-l命令一起使用)Linux路径是此命令可选的参数 ls #查看当前目录所有非隐藏文件(平铺方式显示) ls -a #查看当前目录下所有文件 …...

xss.pwnfunction-Jefff
在eval中可以直接执行命令所以直接把"直接闭合在结尾再加上一个"因为后面的"没闭和会报错 ?jeffa";alert(1);" 或 ?jeffa"-alert(1)-" -是分隔符...

java——文件上传
一、文件上传——简介 文件上传的简介:文件上传是指将本地计算机中的文件传输到网络上的服务器或另一台计算机上的过程。在 Web 开发中,文件上传通常指的是将用户通过 Web 页面提交的文件(如图像、文档、音频、视频等)传输到服务器…...
RCE(远程命令执行)漏洞详解
漏洞描述 RCE(remote command/code execute,远程命令执行)漏洞 远程代码执行 (RCE) 攻击是指攻击者可以在一个组织的计算机或网络上运行恶意代码。执行攻击者控制的代码的能力可用于各种目的,包括部署额外的恶意软件或窃取敏感数据。 漏洞原理 远程代…...

K8S - Deployment 的版本回滚
当前状态 先看deployment rootk8s-master:~# kubectl get deploy -o wide --show-labels NAME READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES …...

53 v-bind 和 v-model 的实现和区别
前言 这个主要的来源是 偶尔的情况下 出现的问题 就比如是 el-select 中选择组件之后, 视图不回显, 然后 model 不更新等等 这个 其实就是 vue 中 视图 -> 模型 的数据同步, 我们通常意义上的处理一般是通过 模型 -> 数据 的数据同步, 比如 我们代码里面更新了 model.…...

VMware-16.0配置虚拟机网络模式
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、为什么要配置网络?二、配置步骤1.检查VMware服务2.进入配置页面3.添加网络模式1.Bridge2.NAT3.Host-only 4.DHCP租约5.静态IP 三、使用总结 前言…...

element-ui badge 组件源码分享
今日简单分享 badge 组件的源码实现,主要从以下两个方面: 1、badge 组件页面结构 2、badge 组件属性 一、badge 组件页面结构 二、badge 组件属性 补充几个标签的用途: sub:下标、sup:上标、var 变量 代码如下&am…...
MySQL中日期有关函数
本次记录了获取日期时间的多种方式,还有日期和字符串之间的转换,以及加减日期的操作。 获取时间 # 1.获取当前时间(年月日时分秒格式) select now();# 2.获取当前时间(年月日格式) select curdate();# 3.获取当前时间(时分秒格式) select curtime();# 4.…...

jdbc工具类
jdbc 工具类,具体见下面代码,直接可以用。 /*** version 1.0* descpription: jdbc工具类* date 2024/4/6*/ public class JDBCUtils {private static final String URL "jdbc:mysql://127.0.0.1:3306/mybatis";private static final String …...
Svelte Web 框架介绍
Svelte 是一个用于构建网络应用程序的现代框架,它与其他用户界面框架(如React和Vue)有着本质的不同。Svelte 的核心理念是在构建应用程序时,将大部分工作转移到编译步骤中,而不是在用户的浏览器中运行时处理。这种方法…...

IP地址获取不到的原因是什么?
在数字化时代的今天,互联网已成为我们日常生活和工作中不可或缺的一部分。而IP地址,作为互联网通信的基础,其重要性不言而喻。然而,有时我们可能会遇到IP地址获取不到的问题,这会给我们的网络使用带来诸多不便。那么&a…...

Android APP加固利器:深入了解混淆算法与混淆配置
Android APP 加固是优化 APK 安全性的一种方法,常见的加固方式有混淆代码、加壳、数据加密、动态加载等。下面介绍一下 Android APP 加固的具体实现方式。 混淆代码 使用 ipaguard工具可以对代码进行混淆,使得反编译出来的代码很难阅读和理解ÿ…...

蓝桥杯真题Day47 倒计时6天:6道真题+回溯递归问题
[蓝桥杯 2019 省 A] 糖果 题目描述 糖果店的老板一共有M种口味的糖果出售。为了方便描述,我们将M 种口味编号 1∼ M。小明希望能品尝到所有口味的糖果。遗憾的是老板并不单独出售糖果,而是K 颗一包整包出售。 幸好糖果包装上注明了其中 K 颗糖果的口味…...
通过UDP实现参数配置
来讲讲UDP的一种常见应用 我们知道UDP是一种无连接的网络传输协议,在发送数据时指定目标IP及端口就可以将数据发送出去,因此特别适合用作网络设备发现。 我们可以自定义一个通信端口,假设为55555。我们再制定一个协议用于查询目标设备&#x…...

解析Apache Kafka:在大数据体系中的基本概念和核心组件
关联阅读博客文章:探讨在大数据体系中API的通信机制与工作原理 关联阅读博客文章:深入解析大数据体系中的ETL工作原理及常见组件 关联阅读博客文章:深度剖析:计算机集群在大数据体系中的关键角色和技术要点 关联阅读博客文章&a…...

独角数卡对接码支付收款教程
1、到码支付后台找到支付配置。2、将上面的复制依次填入,具体看下图,随后点立即添加 商户ID商户PID 商户KEY异步不能为空 商户密钥商户密钥...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...