当前位置: 首页 > news >正文

论文阅读——MVDiffusion

MVDiffusion: Enabling Holistic Multi-view Image Generation with Correspondence-Aware Diffusion

文生图模型

用于根据给定像素到像素对应关系的文本提示生成一致的多视图图像。

MVDiffusion 会在给定任意每个视图文本的情况下合成高分辨率真实感全景图像,或将一幅透视图像推断为完整的 360 度视图。

对于以深度/姿势为条件的多视图图像生成,MVDiffusion 展示了场景网格纹理的最先进性能。

MVDiffusion 通过运行稳定扩散模型的多个副本/分支来同时生成多个图像,并采用新颖的分支间“对应感知注意”(CAA)机制来促进多视图一致性。

Panorama generation任务:

全景图是通过生成八个透视图来实现的,每个透视图具有 90° 的水平视场和 45° 的重叠。为了实现这一目标,我们通过生成模块使用冻结的预训练稳定扩散模型生成八个 512 × 512 图像

CCA:特征图之间的交叉注意力:

在条件图像的 UNet 分支中,我们将一个由 1 组成的掩码连接到图像(总共 4 个通道)。然后,该串联图像用作修复模型的输入,这确保条件图像的内容保持不变。相反,在目标图像的 UNet 分支中,我们将黑色图像(像素值为零)与零掩码连接起来作为输入,从而要求修复模型根据文本生成全新的图像条件以及与条件图像的对应关系。

训练CAA模块。

Multiview depth-to-image generation任务

多视图深度到图像任务旨在生成给定深度/姿势的多视图图像。

MVDiffusion 的过程从生成模块生成关键图像开始,然后由插值模块进行致密化以获得更详细的表示。

多视图深度图像生成的生成模块与全景图生成的生成模块类似。

MVDiffusion 的插值模块受 VideoLDM 的启发,在一对“关键帧”之间创建 N 个图像,这些图像之前已由生成模块生成。该模型采用与生成模型相同的 UNet 结构和对应注意力权重,具有额外的卷积层,并使用高斯噪声重新初始化中间图像和关键图像的潜在特征。该模块的一个显着特征是关键图像的 UNet 分支以已生成的图像为条件。具体来说,这个条件被合并到每个 UNet 块中。在关键图像的 UNet 分支中,生成的图像与 1 的掩码(4 个通道)连接,然后使用零卷积运算将图像下采样到相应的特征图大小。这些下采样条件随后被添加到 UNet 模块的输入中。对于中间图像的分支,我们采取不同的方法。我们将像素值为零的黑色图像附加到零掩码,并应用相同的零卷积运算对图像进行下采样以匹配相应的特征图大小。这些下采样条件也被添加到 UNet 模块的输入中。此过程本质上是对模块进行训练,以便当掩码为 1 时,分支重新生成条件图像,而当掩码为零时,分支生成中间图像。

采用两阶段的培训过程。在第一阶段,我们使用所有 ScanNet 数据对 SD UNet 模型进行微调。此阶段是没有 CAA 块的单视图训练。在第二阶段,我们将 CAA 块和图像条件块集成到 UNet 中,并且仅训练这些添加的参数。我们使用与全景生成相同的损失来训练模型。

计算资源:

4 NVIDIA RTX A6000 GPUs

实验结果:

相关文章:

论文阅读——MVDiffusion

MVDiffusion: Enabling Holistic Multi-view Image Generation with Correspondence-Aware Diffusion 文生图模型 用于根据给定像素到像素对应关系的文本提示生成一致的多视图图像。 MVDiffusion 会在给定任意每个视图文本的情况下合成高分辨率真实感全景图像,或将…...

Linux中的网络命令深度解析与CentOS实践

Linux中的网络命令深度解析与CentOS实践 在Linux系统中,网络命令是管理和诊断网络问题的关键工具。无论是网络管理员还是系统开发者,熟练掌握这些命令都是必不可少的。本文将深入探讨Linux中常用的网络命令,并以CentOS为例,展示这些命令的具体应用。 一、ping命令 ping命…...

nginx配置实例(反向代理)

目录 一、目标-反向代理实现效果 二、安装tomcat 三、配置nginx服务 四、配置反向代理 一、目标-反向代理实现效果 访问过程分析: 二、安装tomcat 1、安装jdk环境 新建/export/server目录 解压jdk 查看是否解压成功 配置jdk软连接 进入jdk的bin目录中&#x…...

Flutter 解决NestedScrollView与TabBar双列表滚动位置同步问题

文章目录 前言一、需要实现的效果如下二、flutter实现代码如下:总结 前言 最近写flutter项目,遇到NestedScrollView与TabBar双列表滚动位置同步问题,下面是解决方案,希望帮助到大家。 一、需要实现的效果如下 1、UI图&#xff1…...

云计算存在的安全隐患

目录 一、概述 二、ENISA云安全漏洞分析 三、云计算相关系统漏洞 3.1 概述 3.2 漏洞分析 3.2.1 Hypervisor漏洞 3.2.1.1 CVE-2018-16882 3.2.1.2 CVE-2017-17563 3.2.1.3 CVE-2010-1225 3.2.2 虚拟机漏洞 3.2.2.1 CVE-2019-14835 3.2.2.2 CVE-2019-5514 3.2.2.3 CV…...

黑翅鸢优化算法(BKA)-2024年SCI一区新算法-公式原理详解与性能测评 Matlab代码免费获取

声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~ 目录 原理简介 一、种群初始化 二、攻击行为 三…...

sqlmap(四)案例

一、注入DB2 http://124.70.71.251:49431/new_list.php?id1 这是墨者学院里的靶机,地址:https://www.mozhe.cn/ 1.1 测试数据库类型 python sqlmap.py -u "http://124.70.71.251:49431/new_list.php?id1" 1.2 测试用户权限类型 查询选…...

【C++初阶】String在OJ中的使用(一):仅仅反转字母、字符串中的第一个唯一字母、字符串最后一个单词的长度、验证回文串、字符串相加

前言: 🎯个人博客:Dream_Chaser 🎈博客专栏:C 📚本篇内容:仅仅反转字母、字符串中的第一个唯一字母、字符串最后一个单词的长度、验证回文串、字符串相加 目录 917.仅仅反转字母 题目描述&am…...

【25考研】:四川大学计算机学院24届874考研考情分析

去年的考情分析也是我做的, 今年就在去年的基础上做了。保持形式不变,更改数据。 21考情: 万载月寒肠断客:四川大学计算机学院21届CS考研考情分析 22考情: 懒羊羊:四川大学计算机学院2022考研考情分析 2…...

【GPT-4 Turbo】、功能融合:OpenAI 首个开发者大会回顾

GPT-4 Turbo、功能融合:OpenAI 首个开发者大会回顾 就在昨天 2023 年 11 月 6 日,OpenAI 举行了首个开发者大会 DevDay,即使作为目前大语言模型行业的领军者,OpenAI 卷起来可一点都不比同行差。 OpenAI 在大会上不仅公布了新的 …...

java-Stream原理及相关操作详解(filter、map、flatMap、peek、reduce、anyMatch等等)

java-Stream原理及相关操作详解 Stream流前言Stream流原理介绍Stream-Api常用方法介绍filter()map()flatMappeekreducemax、minfindAny、 findFirstallMatch、anyMatch、noneMatchsortedcount Stream流前言 Java8特性主要是Stream流以及函数式接口的出现;本片文章主…...

基于Springboot中小企业设备管理系统设计与实现(论文+源码)_kaic

摘 要 随着信息技术和网络技术的飞速发展,人类已进入全新信息化时代,传统管理技术已无法高效,便捷地管理信息。为了迎合时代需求,优化管理效率,各种各样的管理系统应运而生,各行各业相继进入信息管理时代&a…...

ORACLE 12 C估算 用户历史上的CPU消耗

在使用ASH不能满足,需要从AWR,即HIST系列表估算每个用户的cpu消耗,只能进行大概估算 先计算各用户使用的cpu time计算出各用户占比将用户cpu time 与osstat的cpu 使用率相乘 with cpu_usage as (select snap_id,BUSY_TIME/(IDLE_TIMEBUSY…...

Zookeeper 简明使用教程

Zookeeper 简明使用教程 ZooKeeper是一个开源的分布式协调服务,用于管理和维护分布式系统中的配置信息、命名服务、分布式锁、分布式队列等。 一、环境 JDK环境 二、下载 $ wget https://dlcdn.apache.org/zookeeper/zookeeper-3.9.2/apache-zookeeper-3.9.2-bin…...

JS 利用 webcam访问摄像头 上传到服务器

webcam JS 较为详细的指南 定义标题 <!doctype html> <html> <head><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>How to capture picture from webcam with Webcam.js</title></…...

【微信小程序】【小程序样式加载不出来】

微信小程序配置sass 第一步&#xff1a;找配置文件 在项目中找到 project.config.json文件&#xff0c;在setting属性中添加 useCompilerPlugins属性&#xff0c;值为sass即可&#xff0c;若是 less,将数组里面的值改为less即可 "useCompilerPlugins": ["sas…...

【THM】Exploit Vulnerabilities(利用漏洞)-

介绍 在这个房间里,我们将讨论一些识别漏洞的方法,并结合我们的研究技能来了解这些漏洞是如何被滥用的。 此外,您还会发现一些公开可用的资源,这些资源是您在执行漏洞研究和利用时的技能和工具的重要补充。然后,您将在房间的最后将所有这些应用到实际挑战中。 自动化与…...

Tomcat管理配置

Tomcat管理配置 1 host-manager项目2 manager项目 Tomcat 提供了Web版的管理控制台&#xff0c;位于webapps目录下。Tomcat 提供了用于管理Host的host-manager和用于管理Web应用的manager。 1 host-manager项目 Tomcat启动之后&#xff0c;可以通过 http://localhost:8080/ho…...

C++模版简单认识与使用

目录 前言&#xff1a; 1.泛型编程 2.函数模版 3.类模版 为什么要有类模版&#xff1f;使用typedef不行吗&#xff1f; 类模版只能显示实例化&#xff1a; 注意类名与类型的区别&#xff1a; 注意类模版最好不要声明和定义分离&#xff1a; 总结&#xff1a; 前言&…...

图解大型网站多级缓存的分层架构

前言 缓存技术存在于应用场景的方方面面。从浏览器请求&#xff0c;到反向代理服务器&#xff0c;从进程内缓存到分布式缓存&#xff0c;其中缓存策略算法也是层出不穷。 假设一个网站&#xff0c;需要提高性能&#xff0c;缓存可以放在浏览器&#xff0c;可以放在反向代理服…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...