当前位置: 首页 > news >正文

图解大型网站多级缓存的分层架构

前言

缓存技术存在于应用场景的方方面面。从浏览器请求,到反向代理服务器,从进程内缓存到分布式缓存,其中缓存策略算法也是层出不穷。

假设一个网站,需要提高性能,缓存可以放在浏览器,可以放在反向代理服务器,还可以放在应用程序进程内,同时可以放在分布式缓存系统中。

从用户请求数据到数据返回,数据经过了浏览器,CDN,代理服务器,应用服务器,以及数据库各个环节。每个环节都可以运用缓存技术。

从浏览器/客户端开始请求数据,通过 HTTP 配合 CDN 获取数据的变更情况,到达代理服务器(Nginx)可以通过反向代理获取静态资源。

再往下来到应用服务器可以通过进程内(堆内)缓存,分布式缓存等递进的方式获取数据。如果以上所有缓存都没有命中数据,才会回源到数据库。

缓存的请求顺序是:用户请求 → HTTP 缓存 → CDN 缓存 → 代理服务器缓存 → 进程内缓存 → 分布式缓存 → 数据库。

看来在技术的架构每个环节都可以加入缓存,看看每个环节是如何应用缓存技术的。

image.png

HTTP 缓存

当用户通过浏览器请求服务器的时候,会发起 HTTP 请求,如果对每次 HTTP 请求进行缓存,那么可以减少应用服务器的压力。

当第一次请求的时候,浏览器本地缓存库没有缓存数据,会从服务器取数据,并且放到浏览器的缓存库中,下次再进行请求的时候会根据缓存的策略来读取本地或者服务的信息。

私有缓存

私有缓存是绑定到特定客户端的缓存——通常是浏览器缓存。由于存储的响应不与其他客户端共享,因此私有缓存可以存储该用户的个性化响应。该种缓存

如果响应包含个性化内容并且你只想将响应存储在私有缓存中,则必须指定 private 指令。

Cache-Control: private

image.png

共享缓存

共享缓存位于客户端和服务器之间,可以存储能在用户之间共享的响应,可以供多个客户端使用的缓存,通常依赖于代理服务器。

客户端发起的第一个请求通过代理服务器访问源服务器,缓存生效后会存放在代理服务器,后续客户端发起的相同请求,均由代理服务器提供缓存服务,共享缓存可以减轻源服务器的压力

image.png

其实共享代理可以细分为代理缓存托管缓存,简单理解代理缓存由代理服务器管理,位于客户端与原始服务器之间,减轻服务器负载、提高响应速度。托管缓存由内容提供商或 CDN 管理,分布全球,提供更快的内容传递和更好的用户体验。

缓存处理机制

下方为整体处理机制示意图,后文很多内容针对图中某些环节进行扩展讲解

image.png

上面强缓存中的 Pragma 大多数用于 http 1.0(http 1.1 中也适用),而 Cache-Control 只能应用于 http 1.1

需要注意的是,Expires 为服务端返回的过期时间,这种判断缓存是否过期的方式在  HTTP 1.0 用的比较多,到了 HTTP 1.1 会使用 Cache-Control 的 max-age 属性替代(单位是秒)

Last-Modified/If-Modified-Since 规则

在客户端第一次请求的时候,服务器会返回资源最后的修改时间,记作 Last-Modified。客户端将这个字段连同资源缓存起来。

当客户端再次请求服务器时,会把 Last-Modified 连同请求的资源一起发给服务器,这时 Last-Modified 会被命名为 If-Modified-Since,但其内容一样。

服务器收到请求,会把 If-Modified-Since 字段与服务器上保存的 Last-Modified 字段作比较:

  • 若服务器上的 Last-Modified 最后修改时间大于请求的 If-Modified-Since,说明资源被改动过,就会把资源(包括 Header+Body)重新返回给浏览器,同时返回状态码 200
  • 若资源的最后修改时间小于或等于 If-Modified-Since,说明资源没有改动过,只会返回 Header,并且返回状态码 304。浏览器接受到这个消息就可以使用本地缓存库的数据。

注意,Last-Modified 和 If-Modified-Since 指的是同一个值,只是在客户端和服务器端的叫法不同。

ETag / If-None-Match 规则

客户端第一次请求的时候,服务器会给每个资源生成一个 ETag 标记。这个 ETag 是根据每个资源生成的唯一 Hash 串,资源如何发生变化 ETag 随之更改,之后将这个 ETag 返回给客户端,客户端把请求的资源和 ETag 都缓存到本地。

在浏览器第二次请求服务器相同资源时,会把资源对应的 ETag 一并发送给服务器。在请求时 ETag 会被命名为 If-None-Match,但其内容不变

服务器收到请求后,会把 If-None-Match 与服务器上资源的 ETag 进行比较:

  • 如果不一致,说明资源被改动过,则返回资源(Header+Body),返回状态码 200。
  • 如果一致,说明资源没有被改过,则返回 Header,返回状态码 304。浏览器接受到这个消息就可以使用本地缓存库的数据。
规则使用时机

那么什么时候使用修改日期(Last-Modified)再验证和实体标签再验证(ETag)呢?

  • 如果服务器返回了一个 ETag 首部,客户端就必须使用 If-None-Match 实体标签再验证;
  • 如果服务器返回了一个 Last-Modified 首部,客户端就可以使用 If-Modified-Since 修改日期再验证;
  • 如果 ETag 和 Last-Modified 都提供了,客户端就应该同时使用这两种再验证方案。

如果HTTP/1.1缓存或服务器收到的请求既带有 If-Modified-Since,又带有 If-None-Match,那么只有这两个条件都满足时,才能返回304 Not Modified响应。

缓存控制策略

对于网站来说,缓存是达到高性能的重要组成部分,缓存需要合理配置,因为并不是所有资源都是永久不变的。Cache-Control 首部可以对缓存进行控制,Cache-Control 能用于 HTTP 请求和响应中,支持多个指令,以逗号分隔:

请求首部描述
Cache-Control: no-store不使用缓存。
Cache-Control: no-cache使用缓存前,无论本地副本是否过期,都需要请求源服务器进行验证(协商缓存验证)。
Cache-Control: max-age=秒设置缓存存储的最大期限,超过这个期限缓存被认为过期,时间是相对于请求的时间。
Cache-Control: max-stale=秒客户端愿意接收一个已经过期的资源。可以设置一个可选的秒数,表示响应不能已经过时超过该给定的时间。
Cache-Control: min-fresh=秒客户端希望获取一个能在指定的秒数内保持其最新状态的响应。
响应首部描述
Cache-Control: no-store不使用缓存。
Cache-Control: no-cache使用缓存前,无论本地副本是否过期,都需要请求源服务器进行验证(协商缓存验证)。
Cache-Control: max-age=秒设置缓存存储的最大期限,超过这个期限缓存被认为过期,时间是相对于请求的时间。
Cache-Control: s-maxage=秒同 max-age,仅适用于共享缓存。
Cache-Control: private私有缓存,响应只能被单个客户端缓存。
Cache-Control: public共享缓存,即由缓存代理服务器提供的缓存,响应可以被多个客户端缓存。
Cache-Control: must-revalidate如果本地副本未过期,则可继续供客户端使用,不需要向源服务器再验证;如果本地副本已过期(比如已经超过 max-age),在成功向源服务器验证之前,缓存不能用该资源响应后续请求。
Cache-Control: proxy-revalidate同 must-revalidate,仅适用于共享缓存。

Cache-Control有几个指令特别容易混淆,不能望文生义。比如no-cache,并不是指不能用 cache,客户端仍会把带有 no-cache 的响应缓存下来,只不过每次不会直接用缓存,而是要先去服务端验证一下。如果你想让客户端完全不缓存响应,应该用no-store,带有no-store的响应不会被缓存到任意的磁盘或者内存里,它才是真正的 no-cache

下面是对三个容易混淆的指令进行对比说明:

首部描述
Cache-Control: no-store不使用缓存。
Cache-Control: no-cache无论本地副本是否过期,都需要请求源服务器进行验证。
Cache-Control: must-revalidate如果本地副本未过期,可以使用本地副本;否则,需要请求源服务器进行验证。

CDN 缓存

HTTP 缓存主要是对静态数据进行缓存,把从服务器拿到的数据缓存到客户端/浏览器。

如果在客户端和服务器之间再加上一层 CDN,可以让 CDN 为应用服务器提供缓存,如果在 CDN 上缓存,就不用再请求应用服务器了。并且 HTTP 缓存提到的两种策略同样可以在 CDN 服务器执行。

CDN 的全称是 Content Delivery Network,即内容分发网络。其目的是通过在现有的 Internet 中增加一层新的网络架构,将网站的内容发布到最接近用户的网络"边缘",使用户可以就近取得所需的内容,解决 Internet 网络拥塞状况,提高用户访问网站的响应速度。

从技术上全面解决由于网络带宽小、用户访问量大、网点分布不均等原因所造成的用户访问网站响应速度慢的问题。

CDN 分发系统架构

image.png

CDN 工作流程

image.png

用户访问某个站点的内容时,若该站点使用了 CDN 网络,则在用户会在域名解析时获得 CDN 网络 GSLB 设备的 IP 地址。GSLB 设备根据其预设的选择策略(如,地理区域、用户时间等)为用户选择最合适的内容缓存节点,并且使用某种方式(如,基于 DNS、基于 HTTP 重定向、基于 IP 欺骗的方式等)导引用户访问所选的内容缓存节点。

用户继续向缓存节点发出请求,若缓存中包含请求的内容,则直接返回给用户,否则从核心Web服务器中获取该内容,缓存后返回给用户。这样当用户再次访问相同内容或其他用户访问相同内容时,可以直接从缓存中读取,提高了效率。

负载均衡缓存

说完客户端(HTTP)缓存和 CDN 缓存,我们离应用服务越来越近了,在到达应用服务之前,请求还要经过负载均衡器。

虽说它的主要工作是对应用服务器进行负载均衡,但是它也可以作缓存。可以把一些修改频率不高的数据缓存在这里,例如:用户信息,配置信息。通过服务定期刷新这个缓存就行了。

以 Nginx 为例,我们看看它是如何工作的:

  • 用户请求在达到应用服务器之前,会先访问 Nginx 负载均衡器,如果发现有缓存信息,直接返回给用户。
  • 如果没有发现缓存信息,Nginx 回源到应用服务器获取信息。
  • 另外,有一个缓存更新服务,定期把应用服务器中相对稳定的信息更新到 Nginx 本地缓存中。

image.png

进程内缓存

通过了客户端,CDN,负载均衡器,我们终于来到了应用服务器。应用服务器上部署着一个个应用,这些应用以进程的方式运行着,那么在进程中的缓存是怎样的呢?

进程内缓存又叫托管堆缓存,以 Java 为例,这部分缓存放在 JVM 的托管堆上面,同时会受到托管堆回收算法的影响。

由于其运行在内存中,对数据的响应速度很快,通常我们会把热点数据放在这里。

在进程内缓存没有命中的时候,我们会去搜索进程外的缓存或者分布式缓存。这种缓存的好处是没有序列化和反序列化,是最快的缓存。缺点是缓存的空间不能太大,对垃圾回收器的性能有影响。

目前比较流行的实现有 Ehcache、GuavaCache、Caffeine。这些架构可以很方便的把一些热点数据放到进程内的缓存中。

这里我们需要关注几个缓存的回收策略,具体的实现架构的回收策略会有所不同,但大致的思路都是一致的:

  • FIFO(First In First Out):先进先出算法,最先放入缓存的数据最先被移除。
  • LRU(Least Recently Used):最近最少使用算法,把最久没有使用过的数据移除缓存。
  • LFU(Least Frequently Used):最不常用算法,在一段时间内使用频率最小的数据被移除缓存。

在分布式架构的今天,多应用中如果采用进程内缓存会存在数据一致性的问题。

解决方案

保障进程内缓存数据一致性,有以下几种方案

单节点通知修改方案

image.png

第一种方案,可以通过单节点通知其他节点。如上图:写请求发生在 server1,在修改完自己内存数据与数据库中的数据之后,可以主动通知其他 server 节点,也修改内存的数据。

这种方案的缺点是:同一功能的一个集群的多个节点,相互耦合在一起,特别是节点较多时,网状连接关系极其复杂。

消息队列修改方案

image.png

第二种方案,可以通过 MQ 通知其他节点。如上图,写请求发生在 server1,在修改完自己内存数据与数据库中的数据之后,给 MQ 发布数据变化通知,其他 server 节点订阅 MQ 消息,也修改内存数据。

这种方案虽然解除了节点之间的耦合,但引入了MQ,使得系统更加复杂。

前两种方案,节点数量越多,数据冗余份数越多,数据同时更新的原子性越难保证,一致性也就越难保证。

Timer 修改方案

image.png

第三种方案,为了避免耦合,降低复杂性,干脆放弃了“实时一致性”,每个节点启动一个timer,定时从后端拉取最新的数据,更新内存缓存。在有节点更新后端数据,而其他节点通过timer更新数据之间,会读到脏数据。

应用场景

为什么不能频繁使用进程内缓存?

分层架构设计,有一条准则:站点层、服务层要做到无数据无状态,这样才能任意的加节点水平扩展,数据和状态尽量存储到后端的数据存储服务,例如数据库服务或者缓存服务。

可以看到,站点与服务的进程内缓存,实际上违背了分层架构设计的无状态准则,故一般不推荐使用。

那么什么情况下可以考虑使用进程内缓存?

情况一,只读数据,可以考虑在进程启动时加载到内存。

其实此时也可以把数据加载到 redis / memcache,进程外缓存服务也能解决这类问题。

情况二,极高并发,如果透传后端压力极大的场景,可以考虑使用进程内缓存。

例如,秒杀业务,并发量极高,需要站点层挡住流量,可以使用内存缓存。

情况三,一定程度上允许数据不一致业务

例如,有一些计数场景,运营场景,页面对数据一致性要求较低,可以考虑使用进程内页面缓存。

再次强调下,进程内缓存的适用场景并不如 redis/memcache 广泛,不要为了炫技而使用。

分布式缓存

与进程内缓存相对应的就是进程外缓存,它拥有更大的缓存容量,并且可以部署到不同的物理节点,通常会用分布式缓存的方式实现。

分布式缓存是与应用分离的缓存服务,最大的特点是,自身是一个独立的应用/服务,与本地应用隔离,多个应用可直接共享一个或者多个缓存应用/服务。

image.png

既然是分布式缓存,缓存的数据会分布到不同的缓存节点上,每个缓存节点缓存的数据大小通常也是有限制的。

数据被缓存到不同的节点,为了能方便的访问这些节点,需要引入缓存代理,类似 Twemproxy。他会帮助请求找到对应的缓存节点。

同时如果缓存节点增加了,这个代理也会只能识别并且把新的缓存数据分片到新的节点,做横向的扩展。

为了提高缓存的可用性,会在原有的缓存节点上加入 Master/Slave 的设计。当缓存数据写入 Master 节点的时候,会同时同步一份到 Slave 节点。

一旦 Master 节点失效,可以通过代理直接切换到 Slave 节点,这时 Slave 节点就变成了 Master 节点,保证缓存的正常工作。

每个缓存节点还会提供缓存过期的机制,并且会把缓存内容定期以快照的方式保存到文件上,方便缓存崩溃之后启动预热加载。

当缓存做成分布式的时候,数据会根据一定的规律分配到每个缓存应用/服务上,需要缓存的数据量比较大就需要扩展多个缓存节点来实现,这么多的缓存节点,客户端的请求不知道访问哪个节点怎么办?缓存的数据又如何放到这些节点上?

下面介绍三种缓存数据分片的算法,有了这些算法缓存代理就可以方便的找到分片的数据

哈希分片

image.png

Hash 分片的算法就是对缓存的 Key 做哈希计算,然后对总的缓存节点个数取余。你可以这么理解:

比如说,我们部署了三个缓存节点组成一个缓存的集群,当有新的数据要写入时,我们先对这个缓存的 Key 做比如 crc32Hash 算法生成 Hash 值,然后对 Hash 值模 3,得出的结果就是要存入缓存节点的序号。

这个算法最大的优点就是简单易理解,缺点是当增加或者减少缓存节点时,缓存总的节点个数变化造成计算出来的节点发生变化,从而造成缓存失效不可用。

所以如果采用这种方法,最好建立在你对于这组缓存命中率下降不敏感,比如下面还有另外一层缓存来兜底的情况下。那有没有更好的方案能解决这个问题呢?那就是一致性 Hash 分片算法。

一致性哈希分片

用一致性 Hash 算法可以很好地解决增加和删减节点时,命中率下降的问题。在这个算法中,我们将整个 Hash 值空间组织成一个虚拟的圆环,然后将缓存节点的 IP 地址或者主机名做 Hash 取值后,放置在这个圆环上。当我们需要确定某一个 Key 需要存取到哪个节点上的时候,先对这个 Key 做同样的 Hash 取值,确定在环上的位置,然后按照顺时针方向在环上“行走”,遇到的第一个缓存节点就是要访问的节点。比方说下面这张图里面,Key 1Key 2 会落入到 Node 1 中,Key 3Key 4 会落入到 Node 2 中,Key 5 落入到 Node 3 中,Key 6 落入到 Node 4 中。

image.png

这时如果在 Node 1Node 2 之间增加一个 Node 5,你可以看到原本命中 Node 2Key 3 现在命中到 Node 5,而其它的 Key 都没有变化;同样的道理,如果我们把 Node 3 从集群中移除,那么只会影响到 Key 5 。所以你看,在增加和删除节点时,只有少量的 Key漂移 到其它节点上,而大部分的 Key 命中的节点还是会保持不变,从而可以保证命中率不会大幅下降。

image.png

不过,事物总有两面性。虽然这个算法对命中率的影响比较小,但它还是存在问题:

  • 缓存节点在圆环上分布不平均,会造成部分缓存节点的压力较大;
  • 当某个节点故障时,这个节点所要承担的所有访问都会被顺移到另一个节点上,会对后面这个节点造成压力。

一致性哈希的脏数据问题

极端情况下,比如一个有三个节点 A、B、C 承担整体的访问,每个节点的访问量平均,A 故障后,B 将承担双倍的压力(A 和 B 的全部请求),当 B 承担不了流量 Crash 后,C 也将因为要承担原先三倍的流量而 Crash,这就造成了整体缓存系统的雪崩。

解决方案就是在一致性 Hash 算法中引入虚拟节点的概念,它将一个缓存节点计算多个 Hash 值分散到圆环的不同位置,这样既实现了数据的平均,而且当某一个节点故障或者退出的时候,它原先承担的 Key 将以更加平均的方式分配到其他节点上,从而避免雪崩的发生。

其次,就是一致性 Hash 算法的脏数据问题。为什么会产生脏数据呢? 比方说,在集群中有两个节点 AB,客户端初始写入一个 Key 为 k,值为 3 的缓存数据到 Cache A 中。这时如果要更新 k 的值为 4,但是缓存 A 恰好和客户端连接出现了问题,那这次写入请求会写入到 Cache B 中。接下来缓存 A 和客户端的连接恢复,当客户端要获取 k 的值时,就会获取到存在 Cache A 中的脏数据 3,而不是 Cache B 中的 4

所以,在使用一致性 Hash 算法时一定要设置缓存的过期时间,这样当发生漂移时,之前存储的脏数据可能已经过期,就可以减少存在脏数据的几率。

image.png

很显然,数据分片最大的优势就是缓解缓存节点的存储和访问压力,但同时它也让缓存的使用更加复杂。在 MultiGet(批量获取)场景下,单个节点的访问量并没有减少,同时节点数太多会造成缓存访问的 SLA(即“服务等级协议”,SLA 代表了网站服务可用性)得不到很好的保证,因为根据木桶原则,SLA 取决于最慢、最坏的节点的情况,节点数过多也会增加出问题的概率,因此我推荐 46 个节点为佳。

按照数据范围分片

常见场景就是按照 时间区间ID区间 来切分。例如:按日期将不同月甚至是日的数据分散到不同的库中;将 userId1~9999 的记录分到第一个库, 10000~20000 的分到第二个库,以此类推。某种意义上,某些系统中使用的 “冷热数据分离” ,将一些使用较少的历史数据迁移到其他库中,业务功能上只提供热点数据的查询,也是类似的实践。

这样的优点在于:

  • 单表大小可控
  • 天然便于水平扩展,后期如果想对整个分片集群扩容时,只需要添加节点即可,无需对其他分片的数据进行迁移
  • 使用分片字段进行范围查找时,连续分片可快速定位分片进行快速查询,有效避免跨分片查询的问题。

缺点:

  • 热点数据成为性能瓶颈。连续分片可能存在数据热点,例如按时间字段分片,有些分片存储最近时间段内的数据,可能会被频繁的读写,而有些分片存储的历史数据,则很少被查询

参考链接

  • 一篇文章让你明白你多级缓存的分层架构 - 掘金 (juejin.cn)
  • 分布式多级缓存SDK设计的思考-腾讯云开发者社区-腾讯云 (tencent.com)
  • 多级缓存架构设计 - 秦羽的思考 - 博客园 (cnblogs.com)
  • HTTP 缓存 - HTTP | MDN (mozilla.org)
  • 30分钟搞懂 HTTP 缓存 - 掘金 (juejin.cn)
  • 【CDN 最佳实践】CDN缓存策略解读和配置策略 - 知乎 (zhihu.com)
  • CDN图解(秒懂 + 史上最全) - 疯狂创客圈 - 博客园 (cnblogs.com)
  • 009.Nginx缓存配置 - 木二 - 博客园
  • 进程内缓存,究竟怎么玩?-阿里云开发者社区 (aliyun.com)
  • Hash分片,一致性Hash分片和按照数据范围分片三种常用的数据分片方式-腾讯云开发者社区-腾讯云 (tencent.com)

本文由博客一文多发平台 OpenWrite 发布!

相关文章:

图解大型网站多级缓存的分层架构

前言 缓存技术存在于应用场景的方方面面。从浏览器请求,到反向代理服务器,从进程内缓存到分布式缓存,其中缓存策略算法也是层出不穷。 假设一个网站,需要提高性能,缓存可以放在浏览器,可以放在反向代理服…...

基于Vision Transformer的迁移学习在乳腺X光图像分类中的应用

乳房X线摄影(MG)在乳腺癌的早期发现中起着重要作用。MG可以在早期阶段发现乳腺癌,即使是感觉不到肿块的小肿瘤。基于卷积神经网络(CNN)的DL最近吸引了MG的大量关注,因为它有助于克服CAD系统的限制(假阳性、不必要的辐射暴露、无意义的活组织检查、高回调…...

WebGIS 地铁交通线网数据可视化监控平台

数字孪生技术在地铁线网的管理和运维中的应用是一个前沿且迅速发展的领域。随着物联网、大数据、云计算以及人工智能技术的发展,地铁线网数字孪生在智能交通和智慧城市建设中的作用日益凸显。 图扑软件基于 HTML5 的 2D、3D 图形渲染引擎,结合 GIS 地图&…...

批量导入svg文件作为图标使用(vue3)vite-plugin-svg-icons插件的具体应用

目录 需求svg使用简述插件使用简述实现安装插件1、配置vite.config.ts2、src/main.ts引入注册脚本3、写个icon组件4、使用组件 需求 在vue3项目中,需要批量导入某个文件夹内数量不确定的svg文件用来作为图标,开发完成后能够通过增减文件夹内的svg文件&a…...

X服务器远程连接问题解决:Bad displayname ““‘或Missing X server or $DISPLAY

X服务器远程连接问题 报错1 ImportError: this platform is not supported: (failed to acquire X connection: Bad displayname "", DisplayNameError()) Try one of the following resolutions: * Please make surethat you have an X server running, and that …...

matlab:五点中心差分求解Navier边界的Biharmonic方程(具有纳维尔边界的双调和方程)

我们考虑如下形式的双调和方程的数值解 其中,Ω是欧氏空间中的多边形或多面体域,在其中,d为维度,具有分段利普希茨边界,满足内部锥条件,f(x) ∈ L2(Ω)是给定的函数,∆是标准的拉普拉斯算子。算…...

详细介绍微信小程序app.js

这一节,我们详细介绍app.js 这个文件。这个文件的重要性我就不再赘述,前面已经介绍了。 一、app.js是项目的主控文件 任何一个程序都是需要一个入口的,就好比我们在学c的时候就会有一个main函数,其他语言基本都是一样。很明确的…...

【六 (2)机器学习-EDA探索性数据分析模板】

目录 文章导航一、EDA:二、导入类库三、导入数据四、查看数据类型和缺失情况五、确认目标变量和ID六、查看目标变量分布情况七、特征变量按照数据类型分成定量变量和定性变量八、查看定量变量分布情况九、查看定量变量的离散程度十、查看定量变量与目标变量关系十一…...

Java集合——Map、Set和List总结

文章目录 一、Collection二、Map、Set、List的不同三、List1、ArrayList2、LinkedList 四、Map1、HashMap2、LinkedHashMap3、TreeMap 五、Set 一、Collection Collection 的常用方法 public boolean add(E e):把给定的对象添加到当前集合中 。public void clear(…...

Python TensorFlow 2.6 获取 MNIST 数据

Python TensorFlow 2.6 获取 MNIST 数据 2 Python TensorFlow 2.6 获取 MNIST 数据1.1 获取 MNIST 数据1.2 检查 MNIST 数据 2 Python 将npz数据保存为txt3 Java 获取数据并使用SVM训练4 Python 测试SVM准确度 2 Python TensorFlow 2.6 获取 MNIST 数据 1.1 获取 MNIST 数据 …...

EChart简单入门

echart的安装就细不讲了,直接去官网下,实在不会的直接用cdn,省的一番口舌。 cdn.staticfile.net/echarts/4.3.0/echarts.min.js 正入话题哈 什么是EChart? EChart 是一个使用 JavaScript 实现的开源可视化库,Echart支持多种常…...

阿里云8核32G云服务器租用优惠价格表,包括腾讯云和京东云

8核32G云服务器租用优惠价格表,云服务器吧yunfuwuqiba.com整理阿里云8核32G服务器、腾讯云8核32G和京东云8C32G云主机配置报价,腾讯云和京东云是轻量应用服务器,阿里云是云服务器ECS: 阿里云8核32G服务器 阿里云8核32G服务器价格…...

设计模式,工厂方法模式

工厂方法模式概述 工厂方法模式,是对简单工厂模式的进一步抽象和推广。以我个人理解,工厂方法模式就是对生产工厂的抽象,就是用一个生产工厂的工厂来进行目标对象的创建。 工厂方法模式的角色组成和简单工厂方法相比,创建了一个…...

WPF中嵌入3D模型通用结构

背景:wpf本身有提供3D的绘制,但是自己通过代码描绘出3D是比较困难的。3D库helix-toolkit支持调用第三方生成的模型,比如Blender这些,所以在wpf上使用3D就变得非常简单。这里是一个通过helix-toolkit库调用第三方生成的3d模型的样例…...

举个例子说明联邦学习

学习目标: 一周掌握 Java 入门知识 学习内容: 联邦学习是一种机器学习方法,它允许多个参与者协同训练一个共享模型,同时保持各自数据的隐私。 联邦学习概念(例子): 假设有三家医院,它们都希望…...

【Python】免费的图片/图标网站

专栏文章索引:Python 有问题可私聊:QQ:3375119339 这里是我收集的几个免费的图片/图标网站: iconfont-阿里巴巴矢量图标库icon(.ico)INCONFINDER(.ico)...

Pytorch中的nn.Embedding()

模块的输入是一个索引列表,输出是相应的词嵌入。 Embedding.weight(Tensor)–形状模块(num_embeddings,Embedding_dim)的可学习权重,初始化自(0,1)。 也就是…...

WebSocketServer后端配置,精简版

首先需要maven配置 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId><version>2.1.3.RELEASE</version></dependency> 然后加上配置类 这段代码是一个Spri…...

Python程序设计 多重循环(二)

1.打印数字图形 输入n&#xff08;n<9)&#xff0c;输出由数字组成的直角三角图形。例如&#xff0c;输入5&#xff0c;输出图形如下 nint(input("")) #开始 for i in range(1,n1):for j in range(1,i1):print(j,end"")print()#结束 2.打印字符图形 …...

前端面试题--CSS系列(一)

CSS系列--持续更新中 1.CSS预处理器有哪些类型&#xff0c;有什么区别2.盒模型是什么&#xff0c;有哪两种类型3.css选择器有哪些&#xff0c;优先级是怎样的&#xff0c;哪些属性可以继承4. 说说em/px/rem/vh/vw的区别5.元素实现水平垂直居中的方法有哪些&#xff0c;如果元素…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...