当前位置: 首页 > news >正文

【六 (2)机器学习-EDA探索性数据分析模板】

目录

    • 文章导航
    • 一、EDA:
    • 二、导入类库
    • 三、导入数据
    • 四、查看数据类型和缺失情况
    • 五、确认目标变量和ID
    • 六、查看目标变量分布情况
    • 七、特征变量按照数据类型分成定量变量和定性变量
    • 八、查看定量变量分布情况
    • 九、查看定量变量的离散程度
    • 十、查看定量变量与目标变量关系
    • 十一、查看定性变量分布情况
    • 十二、查看定性变量与目标变量关系
    • 十三、查看定性变量对目标变量的显著性影响
    • 十四、查看定性变量和目标变量的spearman相关系数
    • 十五、查看定量变量与目标变量相关性
    • 十六、查看定性变量与目标变量相关性

文章导航

【一 简明数据分析进阶路径介绍(文章导航)】

一、EDA:

EDA(Exploratory Data Analysis)即探索性数据分析,EDA通过可视化、统计和图形化的方法,对数据集进行全面的、非形式化的初步分析,帮助分析人员了解数据的基本特征,发现数据中的规律和模式。这有助于获取对数据的直观感受和深刻理解,为后续的数据处理和建模提供基础。

二、导入类库

# 导入类库
import numpy as np
import pandas as pd
import scipy.stats as statsimport matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px  import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import RobustScalerfrom sklearn.decomposition import PCA
from sklearn.model_selection import cross_val_score, GridSearchCV, KFoldfrom sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin
from sklearn.base import clone
from sklearn.linear_model import Lasso
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, ExtraTreesRegressor
from sklearn.svm import SVR, LinearSVR
from sklearn.linear_model import ElasticNet, SGDRegressor, BayesianRidge
from sklearn.kernel_ridge import KernelRidge
from xgboost import XGBRegressor
# 显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False# pandas显示所有行和列 
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

三、导入数据

train = pd.read_csv('./train.csv')
test = pd.read_csv('./test.csv')train.head()

四、查看数据类型和缺失情况

train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 90615 entries, 0 to 90614
Data columns (total 10 columns):#   Column          Non-Null Count  Dtype  
---  ------          --------------  -----  0   id              90615 non-null  int64  1   Sex             90615 non-null  object 2   Length          90615 non-null  float643   Diameter        90615 non-null  float644   Height          90615 non-null  float645   Whole weight    90615 non-null  float646   Whole weight.1  90615 non-null  float647   Whole weight.2  90615 non-null  float648   Shell weight    90615 non-null  float649   Rings           90615 non-null  int64  
dtypes: float64(7), int64(2), object(1)
memory usage: 6.9+ MB

五、确认目标变量和ID

Target_features = ['Rings'] #目标变量
ID_features = ['id'] #id

六、查看目标变量分布情况

Target_counts = train[Target_features].value_counts().reset_index()  
Target_counts.columns = [Target_features[0], 'Count']  # 绘制条形图  
fig = px.bar(Target_counts,x=Target_features[0], y='Count', title=Target_features[0]+'分布')  # 遍历每个轨迹并设置文本  
def set_text(trace):  trace.text = [f"{val:.1f}" for val in trace.y]  trace.textposition = 'outside'  fig.for_each_trace(set_text)  # 显示图表  
fig.show()

在这里插入图片描述

七、特征变量按照数据类型分成定量变量和定性变量

# 移除ID和目标变量
train_columns = list(train.columns)
train_columns.remove(Target_features[0])
train_columns.remove(ID_features[0])# 特征变量按照数据类型分成定量变量和定性变量
quantitative = [feature for feature in train_columns if train.dtypes[feature] != 'object'] # 定量变量
print('定量变量')
print(quantitative)
qualitative = [feature for feature in train_columns if train.dtypes[feature] == 'object'] # 定性变量
print('定性变量')
print(qualitative)
定量变量
['Length', 'Diameter', 'Height', 'Whole weight', 'Whole weight.1', 'Whole weight.2', 'Shell weight']
定性变量
['Sex']

八、查看定量变量分布情况

# 查看定量变量分布情况
m_cont = pd.melt(train, value_vars=quantitative)
g = sns.FacetGrid(m_cont, col='variable', col_wrap=4, sharex=False, sharey=False)
g.map(sns.distplot, 'value')

在这里插入图片描述

九、查看定量变量的离散程度

# 查看定量变量的离散程度
def plot_boxplots(df):m_disc = pd.melt(df)g = sns.FacetGrid(m_disc, col='variable', col_wrap=4, sharex=False, sharey=False)g.map(sns.boxplot, 'variable', 'value', width=0.5)plt.show()plot_boxplots(train[quantitative])       

在这里插入图片描述

十、查看定量变量与目标变量关系

# 定量变量与目标变量关系图
m_cont = pd.melt(train, id_vars=Target_features[0], value_vars=quantitative)
g = sns.FacetGrid(m_cont, col='variable', col_wrap=4, sharex=False, sharey=True)
g.map(plt.scatter, 'value', Target_features[0])

在这里插入图片描述

十一、查看定性变量分布情况

# 定性变量频数统计图
m_disc = pd.melt(train, value_vars=qualitative)
g = sns.FacetGrid(m_disc, col='variable', col_wrap=4, sharex=False, sharey=False)
g.map(sns.countplot, 'value')

在这里插入图片描述

十二、查看定性变量与目标变量关系

# 定性变量与目标变量关系图
m_disc = pd.melt(train, id_vars=Target_features[0], value_vars=qualitative)
g = sns.FacetGrid(m_disc, col='variable', col_wrap=4, sharex=False, sharey=False)
g.map(sns.boxplot, 'value', Target_features[0])

在这里插入图片描述

十三、查看定性变量对目标变量的显著性影响

# 查看定性变量对目标变量的显著性影响
def anova(frame, qualitative):anv = pd.DataFrame()anv['feature'] = qualitativep_vals = []for fea in qualitative:samples = []cls = frame[fea].unique() # 变量的类别值for c in cls:c_array = frame[frame[fea]==c][Target_features[0]].valuessamples.append(c_array)p_val = stats.f_oneway(*samples)[1] # 获得p值,p值越小,对SalePrice的显著性影响越大p_vals.append(p_val)anv['pval'] = p_valsreturn anv.sort_values('pval')
a = anova(train, qualitative)
a['disparity'] = np.log(1./a['pval'].values) # 对SalePrice的影响悬殊度
plt.figure(figsize=(8, 6))
sns.barplot(x='feature', y='disparity', data=a)
plt.xticks(rotation=90)
plt.show()

在这里插入图片描述

十四、查看定性变量和目标变量的spearman相关系数

# 查看定性变量和目标变量的spearman相关系数
# 需要先把定性变量处理为数值类型
def encode(frame, feature):ordering = pd.DataFrame()ordering['val'] = frame[feature].unique()ordering.index = ordering['val']ordering['spmean'] = frame[[feature, Target_features[0]]].groupby(feature)[Target_features[0]].mean()ordering = ordering.sort_values('spmean')ordering['ordering'] = np.arange(1, ordering.shape[0]+1)ordering = ordering['ordering'].to_dict() # 返回的数据样例{category1:1, category2:2, ...}# 对frame[feature]编码for category, code_value in ordering.items():frame.loc[frame[feature]==category, feature+'_E'] = code_value
qual_encoded = []
for qual in qualitative:encode(train, qual)qual_encoded.append(qual+'_E')
# print(qual_encoded)def spearman(frame, features):spr =  pd.DataFrame()spr['feature'] = featuresspr['spearman'] = [frame[f].corr(frame[Target_features[0]], 'spearman') for f in features]spr = spr.sort_values('spearman')plt.figure(figsize=(6, 0.25*len(features)))sns.barplot(x='spearman', y='feature', data=spr)
spearman(train, quantitative+qual_encoded)

在这里插入图片描述

十五、查看定量变量与目标变量相关性

# 定量变量与目标变量相关性
# plt.figure(1, figsize=(12,9))
corrmat = train[quantitative+[Target_features[0]]].corr()
k = 10 #number of variables for heatmap
cols = corrmat.nlargest(k, Target_features[0])[Target_features[0]].index
corr = train[list(cols)].corr()
sns.set(font_scale=1.25)
sns.heatmap(corr, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values)
plt.show()

在这里插入图片描述

十六、查看定性变量与目标变量相关性

# 定性变量与目标变量相关性# plt.figure(1, figsize=(12,9))
corrmat = train[qual_encoded+[Target_features[0]]].corr()
k = 10 #number of variables for heatmap
cols = corrmat.nlargest(k, Target_features[0])[Target_features[0]].index
corr = train[list(cols)].corr()
sns.set(font_scale=1.25)
sns.heatmap(corr, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values)
plt.show()

在这里插入图片描述

相关文章:

【六 (2)机器学习-EDA探索性数据分析模板】

目录 文章导航一、EDA&#xff1a;二、导入类库三、导入数据四、查看数据类型和缺失情况五、确认目标变量和ID六、查看目标变量分布情况七、特征变量按照数据类型分成定量变量和定性变量八、查看定量变量分布情况九、查看定量变量的离散程度十、查看定量变量与目标变量关系十一…...

Java集合——Map、Set和List总结

文章目录 一、Collection二、Map、Set、List的不同三、List1、ArrayList2、LinkedList 四、Map1、HashMap2、LinkedHashMap3、TreeMap 五、Set 一、Collection Collection 的常用方法 public boolean add(E e)&#xff1a;把给定的对象添加到当前集合中 。public void clear(…...

Python TensorFlow 2.6 获取 MNIST 数据

Python TensorFlow 2.6 获取 MNIST 数据 2 Python TensorFlow 2.6 获取 MNIST 数据1.1 获取 MNIST 数据1.2 检查 MNIST 数据 2 Python 将npz数据保存为txt3 Java 获取数据并使用SVM训练4 Python 测试SVM准确度 2 Python TensorFlow 2.6 获取 MNIST 数据 1.1 获取 MNIST 数据 …...

EChart简单入门

echart的安装就细不讲了&#xff0c;直接去官网下&#xff0c;实在不会的直接用cdn,省的一番口舌。 cdn.staticfile.net/echarts/4.3.0/echarts.min.js 正入话题哈 什么是EChart&#xff1f; EChart 是一个使用 JavaScript 实现的开源可视化库&#xff0c;Echart支持多种常…...

阿里云8核32G云服务器租用优惠价格表,包括腾讯云和京东云

8核32G云服务器租用优惠价格表&#xff0c;云服务器吧yunfuwuqiba.com整理阿里云8核32G服务器、腾讯云8核32G和京东云8C32G云主机配置报价&#xff0c;腾讯云和京东云是轻量应用服务器&#xff0c;阿里云是云服务器ECS&#xff1a; 阿里云8核32G服务器 阿里云8核32G服务器价格…...

设计模式,工厂方法模式

工厂方法模式概述 工厂方法模式&#xff0c;是对简单工厂模式的进一步抽象和推广。以我个人理解&#xff0c;工厂方法模式就是对生产工厂的抽象&#xff0c;就是用一个生产工厂的工厂来进行目标对象的创建。 工厂方法模式的角色组成和简单工厂方法相比&#xff0c;创建了一个…...

WPF中嵌入3D模型通用结构

背景&#xff1a;wpf本身有提供3D的绘制&#xff0c;但是自己通过代码描绘出3D是比较困难的。3D库helix-toolkit支持调用第三方生成的模型&#xff0c;比如Blender这些&#xff0c;所以在wpf上使用3D就变得非常简单。这里是一个通过helix-toolkit库调用第三方生成的3d模型的样例…...

举个例子说明联邦学习

学习目标&#xff1a; 一周掌握 Java 入门知识 学习内容&#xff1a; 联邦学习是一种机器学习方法&#xff0c;它允许多个参与者协同训练一个共享模型&#xff0c;同时保持各自数据的隐私。 联邦学习概念&#xff08;例子&#xff09;: 假设有三家医院&#xff0c;它们都希望…...

【Python】免费的图片/图标网站

专栏文章索引&#xff1a;Python 有问题可私聊&#xff1a;QQ&#xff1a;3375119339 这里是我收集的几个免费的图片/图标网站&#xff1a; iconfont-阿里巴巴矢量图标库icon&#xff08;.ico&#xff09;INCONFINDER&#xff08;.ico&#xff09;...

Pytorch中的nn.Embedding()

模块的输入是一个索引列表&#xff0c;输出是相应的词嵌入。 Embedding.weight&#xff08;Tensor&#xff09;–形状模块&#xff08;num_embeddings&#xff0c;Embedding_dim&#xff09;的可学习权重&#xff0c;初始化自&#xff08;0&#xff0c;1&#xff09;。 也就是…...

WebSocketServer后端配置,精简版

首先需要maven配置 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId><version>2.1.3.RELEASE</version></dependency> 然后加上配置类 这段代码是一个Spri…...

Python程序设计 多重循环(二)

1.打印数字图形 输入n&#xff08;n<9)&#xff0c;输出由数字组成的直角三角图形。例如&#xff0c;输入5&#xff0c;输出图形如下 nint(input("")) #开始 for i in range(1,n1):for j in range(1,i1):print(j,end"")print()#结束 2.打印字符图形 …...

前端面试题--CSS系列(一)

CSS系列--持续更新中 1.CSS预处理器有哪些类型&#xff0c;有什么区别2.盒模型是什么&#xff0c;有哪两种类型3.css选择器有哪些&#xff0c;优先级是怎样的&#xff0c;哪些属性可以继承4. 说说em/px/rem/vh/vw的区别5.元素实现水平垂直居中的方法有哪些&#xff0c;如果元素…...

VSCode好用插件

由于现在还是使用vue2&#xff0c;所以本文只记录vue2开发中好用的插件。 美化类插件不介绍了&#xff0c;那些貌似对生产力起不到什么大的帮助&#xff0c;纯粹的“唯心主义”罢了&#xff0c;但是如果你有兴趣的话可以查看上一篇博客&#xff1a;VSCode美化 1. vuter 简介&…...

Vue3:对ref、reactive的一个性能优化API

一、情景说明 我们知道&#xff0c;在Vue3中&#xff0c;想要创建响应式的变量&#xff0c;就要用到ref、reactive来包裹一下数据即可。 但是&#xff0c;这里有个损耗性能的地方 就是&#xff0c;被它包裹的数据&#xff0c;都会构建成响应式的&#xff0c;无论多少层次&…...

Python 用pygame简简单单实现一个打砖块

# -*- coding: utf-8 -*- # # # Copyright (C) 2024 , Inc. All Rights Reserved # # # Time : 2024/3/30 14:34 # Author : 赫凯 # Email : hekaiiii163.com # File : ballgame.py # Software: PyCharm import math import randomimport pygame import sys#…...

软考113-上午题-【计算机网络】-IPv6、无线网络、Windows命令

一、IPv6 IPv6 具有长达 128 位的地址空间&#xff0c;可以彻底解决 IPv4 地址不足的问题。由于 IPv4 地址是32 位二进制&#xff0c;所能表示的IP 地址个数为 2^32 4 294 967 29640 亿&#xff0c;因而在因特网上约有 40亿个P 地址。 由 32 位的IPv4 升级至 128 位的IPv6&am…...

深入浅出 -- 系统架构之负载均衡Nginx资源压缩

一、Nginx资源压缩 建立在动静分离的基础之上&#xff0c;如果一个静态资源的Size越小&#xff0c;那么自然传输速度会更快&#xff0c;同时也会更节省带宽&#xff0c;因此我们在部署项目时&#xff0c;也可以通过Nginx对于静态资源实现压缩传输&#xff0c;一方面可以节省带宽…...

基于jsp+Spring boot+mybatis的图书管理系统设计和实现

基于jspSpring bootmybatis的图书管理系统设计和实现 博主介绍&#xff1a;多年java开发经验&#xff0c;专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 作者主页 央顺技术团队 Java毕设项目精品实战案例《1000套》 欢迎点赞 收藏 ⭐留言 文末获…...

Pytorch转onnx

pytorch 转 onnx 模型需要函数 torch.onnx.export。 def export(model: Union[torch.nn.Module, torch.jit.ScriptModule, torch.jit.ScriptFunction],args: Union[Tuple[Any, ...], torch.Tensor],f: Union[str, io.BytesIO],export_params: bool True,verbose: bool False…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

热烈祝贺埃文科技正式加入可信数据空间发展联盟

2025年4月29日&#xff0c;在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上&#xff0c;可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞&#xff0c;强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...