当前位置: 首页 > news >正文

Pytorch转onnx

pytorch 转 onnx 模型需要函数 torch.onnx.export。

def export(model: Union[torch.nn.Module, torch.jit.ScriptModule, torch.jit.ScriptFunction],args: Union[Tuple[Any, ...], torch.Tensor],f: Union[str, io.BytesIO],export_params: bool = True,verbose: bool = False,training: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL,input_names: Optional[Sequence[str]] = None,output_names: Optional[Sequence[str]] = None,operator_export_type: _C_onnx.OperatorExportTypes = _C_onnx.OperatorExportTypes.ONNX,opset_version: Optional[int] = None,do_constant_folding: bool = True,dynamic_axes: Optional[Union[Mapping[str, Mapping[int, str]], Mapping[str, Sequence[int]]]] = None,keep_initializers_as_inputs: Optional[bool] = None,custom_opsets: Optional[Mapping[str, int]] = None,export_modules_as_functions: Union[bool, Collection[Type[torch.nn.Module]]] = False,
) -> None:

常用参数说明

model——需要导出的pytorch模型
args——模型的输入参数,满足输入层的shape正确即可。
f——输出的onnx模型的位置。例如‘yolov5.onnx’。
export_params——输出模型是否可训练。default=True,表示导出trained model,否则untrained。
verbose——是否打印模型转换信息。default=False。
input_names——输入节点名称。default=None。
output_names——输出节点名称。default=None。
opset_version——算子指令集合
do_constant_folding——是否使用常量折叠,默认即可。default=True。
dynamic_axes——模型的输入输出有时是可变的,如Rnn,或者输出图像的batch可变,可通过该参数设置。如输入层的shape为(b,3,h,w),batch,height,width是可变的,但是chancel是固定三通道

参数说明
ONNX算子文档
ONNX 算子的定义情况,都可以在官方的算子文档中查看
这份文档中最重要的开头的这个算子变更表格。表格的第一列是算子名,第二列是该算子发生变动的算子集版本号,也就是我们之前在torch.onnx.export中提到的opset_version表示的算子集版本号。通过查看算子第一次发生变动的版本号,我们可以知道某个算子是从哪个版本开始支持的;通过查看某算子小于等于opset_version的第一个改动记录,我们可以知道当前算子集版本中该算子的定义规则。
在这里插入图片描述
练习

import torch
import torch.nn as nn
import torch.onnxclass Model(torch.nn.Module):def __init__(self, in_features, out_features, weights, bias=False):super().__init__()self.linear = nn.Linear(in_features, out_features, bias)with torch.no_grad():self.linear.weight.copy_(weights)def forward(self, x):x = self.linear(x)return xdef infer():in_features = torch.tensor([1, 2, 3, 4], dtype=torch.float32)weights = torch.tensor([[1, 2, 3, 4],[2, 3, 4, 5],[3, 4, 5, 6]],dtype=torch.float32)model = Model(4, 3, weights)x = model(in_features)print("result is: ", x)def export_onnx():input   = torch.zeros(1, 1, 1, 4)weights = torch.tensor([[1, 2, 3, 4],[2, 3, 4, 5],[3, 4, 5, 6]],dtype=torch.float32)model   = Model(4, 3, weights)model.eval() #添加eval防止权重继续更新# pytorch导出onnx的方式,参数有很多,也可以支持动态size# 我们先做一些最基本的导出,从netron学习一下导出的onnx都有那些东西torch.onnx.export(model         = model, args          = (input,),f             = "../models/example.onnx",input_names   = ["input0"],output_names  = ["output0"],opset_version = 12)print("Finished onnx export")if __name__ == "__main__":infer()export_onnx()

然后使用netron打开onnx文件,如果没有安装netron,在终端使用pip install netron。
在这里插入图片描述

参考链接
模型部署入门教程(三):PyTorch 转 ONNX 详解

相关文章:

Pytorch转onnx

pytorch 转 onnx 模型需要函数 torch.onnx.export。 def export(model: Union[torch.nn.Module, torch.jit.ScriptModule, torch.jit.ScriptFunction],args: Union[Tuple[Any, ...], torch.Tensor],f: Union[str, io.BytesIO],export_params: bool True,verbose: bool False…...

苍穹外卖——项目搭建

一、项目介绍以及环境搭建 1.苍穹外卖项目介绍 1.1项目介绍 本项目(苍穹外卖)是专门为餐饮企业(餐厅、饭店)定制的一款软件产品,包括 系统管理后台 和 小程序端应用 两部分。其中系统管理后台主要提供给餐饮企业内部员…...

云原生架构(微服务、容器云、DevOps、不可变基础设施、声明式API、Serverless、Service Mesh)

前言 读完本文,你将对云原生下的核心概念微服务、容器云、DevOps、Immutable Infrastructure、Declarative-API、Serverless、Service Mesh 等有一个相对详细的了解,帮助你快速掌握云原生的核心和要点。 因题主资源有限, 这里会选用部分云服务商的组件进…...

基于重写ribbon负载实现灰度发布

项目结构如下 代码如下&#xff1a; pom&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocat…...

无端科技一面(生死狙击项目组 战斗客户端 40min)

自我介绍 实习经历询问 项目询问 TCP和UDP的区别 什么情况会用到UDP 大小端 寻路算法了解多少 A*算法 场景题&#xff1a;扫雷如何随机分地雷&#xff0c;怎么安排数字显示 怎么判断一个物体在三角锥内 动作游戏中打击效果怎么处理穿模问题 八叉树了解过吗 骨骼动画…...

idea开发 java web 高校学籍管理系统bootstrap框架web结构java编程计算机网页

一、源码特点 java 高校学籍管理系统是一套完善的完整信息系统&#xff0c;结合java web开发和bootstrap UI框架完成本系统 &#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 前段主要技术 css jq…...

linux之文件系统、inode和动静态库制作和发布

一、背景 1.没有被打开的文件都在磁盘上 --- 磁盘级文件 2.对磁盘级别的文件&#xff0c;我们的侧重点 单个文件角度 -- 这个文件在哪里&#xff0c;有多大&#xff0c;其他属性是什么&#xff1f; 站在系统角度 -- 一共有多少文件&#xff1f;各自属性在哪里&#xff1f…...

C++IO类,输入输出缓冲区,流状态

我们的程序已经使用了很多IO库设施&#xff1a; istream(输入流)类型&#xff0c;提供输入操作。ostream(输出流)类型&#xff0c;提供输出操作。cin&#xff0c;一个istream对象&#xff0c;从标准输入读取数据。写入到标准错误。cout&#xff0c;一个ostream对象&#xff0c…...

机器学习笔记 - 文字转语音技术路线简述以及相关工具不完全清单

一、TTS技术简述 今天的文本到语音转换技术(TTS)的目标已经不仅仅是让机器说话,而是让它们听起来像不同年龄和性别的人类。通常,TTS 系统合成器的质量是从不同方面进行评估的,包括合成语音的清晰度、自然度和偏好,以及人类感知因素,例如可理解性。 1、技术路线 (1)基…...

阿里云4核8G服务器ECS通用算力型u1实例优惠价格

阿里云4核8G服务器优惠价格955元一年&#xff0c;配置为ECS通用算力型u1实例&#xff08;ecs.u1-c1m2.xlarge&#xff09;4核8G配置、1M到3M带宽可选、ESSD Entry系统盘20G到40G可选&#xff0c;CPU采用Intel(R) Xeon(R) Platinum处理器&#xff0c;阿里云活动链接 aliyunfuwuq…...

Jetson nano部署Yolov8 安装Archiconda3+创建pytorch环境(详细教程+错误解决)

由于jetson nano 是aarch64架构&#xff0c;Anaconda官方不支持aarch64架构&#xff0c;所以有了一个叫“Archiconda”&#xff0c;其目的就是将conda移植到aarch64平台上 一. 下载地址Releases Archiconda/build-tools GitHub 然后安装archiconda bash Archiconda3-0.2.3…...

Node.JS多线程PromisePool之promise-pool库实现

什么是Promise Pool Map-like, concurrent promise processing for Node.js. Promise-Pool是一个用于管理并发请求的JavaScript库&#xff0c;它可以限制同时进行的请求数量&#xff0c;以避免过多的请求导致服务器压力过大。使用Promise-Pool可以方便地实现对多个异步操作的并…...

【C++】红黑树讲解及实现

前言&#xff1a; AVL树与红黑树相似&#xff0c;都是一种平衡二叉搜索树&#xff0c;但是AVL树的平衡要求太严格&#xff0c;如果要对AVL树做一些结构修改的操作性能会非常低下&#xff0c;比如&#xff1a;插入时要维护其绝对平衡&#xff0c;旋转的次数比较多&#xff0c;更…...

security如何不拦截websocket

只要添加一个关键配置就行 //忽略websocket拦截Overridepublic void configure(WebSecurity webSecurity){webSecurity.ignoring().antMatchers("/**");} 全部代码我放着了 package com.oddfar.campus.framework.config;import com.oddfar.campus.framework.secur…...

Unity类银河恶魔城学习记录12-3 p125 Limit Inventory Slots源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释&#xff0c;可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili Inventory.cs using Newtonsoft.Json.Linq; using System.Collections; us…...

【智能排班系统】雪花算法生成分布式ID

文章目录 雪花算法介绍起源与命名基本原理与结构优势与特点应用场景 代码实现代码结构自定义机器标识RandomWorkIdChooseLocalRedisWorkIdChooselua脚本 实体类SnowflakeIdInfoWorkCenterInfo 雪花算法类配置类雪花算法工具类 说明 雪花算法介绍 在复杂而庞大的分布式系统中&a…...

sass中的导入与部分导入

文章目录 sass中的导入与部分导入1. import&#xff1a;传统的导入方式2. use&#xff1a;现代化的模块化导入 sass中的导入与部分导入 在大型前端项目中&#xff0c;CSS代码量往往十分庞大&#xff0c;为了保持其可读性、可维护性以及便于团队协作&#xff0c;模块化开发成为…...

工业组态 物联网组态 组态编辑器 web组态 组态插件 编辑器

体验地址&#xff1a;by组态[web组态插件] BY组态是一款非常优秀的纯前端的【web组态插件工具】&#xff0c;可无缝嵌入到vue项目&#xff0c;react项目等&#xff0c;由于是原生js开发&#xff0c;对于前端的集成没有框架的限制。同时由于BY组态只是一个插件&#xff0c;不能独…...

git可视化工具

Gitkraken GitKraken 是一款专门用于管理和协作Git仓库的图形化界面工具。它拥有友好直观的界面&#xff0c;使得Git的操作变得更加简单易用&#xff0c;尤其适合那些不熟悉Git命令行的开发者。GitKraken提供了丰富的功能&#xff0c;如代码审查、分支管理、仓库克隆、提交、推…...

基于单片机电子密码锁系统设计

**单片机设计介绍&#xff0c;基于单片机电子密码锁系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机电子密码锁系统设计概要主要包括以下几个方面&#xff1a; 一、系统概述 基于单片机电子密码锁系统是一个…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...