当前位置: 首页 > news >正文

机器学习笔记 - 文字转语音技术路线简述以及相关工具不完全清单

一、TTS技术简述

        今天的文本到语音转换技术(TTS)的目标已经不仅仅是让机器说话,而是让它们听起来像不同年龄和性别的人类。通常,TTS 系统合成器的质量是从不同方面进行评估的,包括合成语音的清晰度、自然度和偏好,以及人类感知因素,例如可理解性。

1、技术路线

(1)基于拼接合成的方法

        拼接合成(Concatenative Synthesis)的方法就是将预先录制好的语音片段存储在数据库中,根据输入文本,选择并拼接相应的语音片段来合成语音。 这种方式语音质量高,自然度好。 但需要大量的语音数据,灵活性较差,难以适应新的发音或语调变化。

        一些开源项目Festival:、 MaryTTS、Flite等。

(2)基于参数合成的方法

        参数合成(Parametric Synthesis)的方法是使用统计模型来学习语音的声学特征,并根据输入文本生成语音参数,最终合成语音。其背后的想法是,如果我们能够对构成语音的参数进行近似,我们就可以训练一个模型来生成各种语音。参数方法结合参数,包括基频、幅度谱等,并处理它们以生成语音。

        第一步,处理文本以提取语言特征,例如音素或持续时间。第二步需要提取声码器特征,例如倒谱、频谱图、基频等,这些特征代表人类语音的一些固有特征

相关文章:

机器学习笔记 - 文字转语音技术路线简述以及相关工具不完全清单

一、TTS技术简述 今天的文本到语音转换技术(TTS)的目标已经不仅仅是让机器说话,而是让它们听起来像不同年龄和性别的人类。通常,TTS 系统合成器的质量是从不同方面进行评估的,包括合成语音的清晰度、自然度和偏好,以及人类感知因素,例如可理解性。 1、技术路线 (1)基…...

阿里云4核8G服务器ECS通用算力型u1实例优惠价格

阿里云4核8G服务器优惠价格955元一年,配置为ECS通用算力型u1实例(ecs.u1-c1m2.xlarge)4核8G配置、1M到3M带宽可选、ESSD Entry系统盘20G到40G可选,CPU采用Intel(R) Xeon(R) Platinum处理器,阿里云活动链接 aliyunfuwuq…...

Jetson nano部署Yolov8 安装Archiconda3+创建pytorch环境(详细教程+错误解决)

由于jetson nano 是aarch64架构,Anaconda官方不支持aarch64架构,所以有了一个叫“Archiconda”,其目的就是将conda移植到aarch64平台上 一. 下载地址Releases Archiconda/build-tools GitHub 然后安装archiconda bash Archiconda3-0.2.3…...

Node.JS多线程PromisePool之promise-pool库实现

什么是Promise Pool Map-like, concurrent promise processing for Node.js. Promise-Pool是一个用于管理并发请求的JavaScript库,它可以限制同时进行的请求数量,以避免过多的请求导致服务器压力过大。使用Promise-Pool可以方便地实现对多个异步操作的并…...

【C++】红黑树讲解及实现

前言: AVL树与红黑树相似,都是一种平衡二叉搜索树,但是AVL树的平衡要求太严格,如果要对AVL树做一些结构修改的操作性能会非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更…...

security如何不拦截websocket

只要添加一个关键配置就行 //忽略websocket拦截Overridepublic void configure(WebSecurity webSecurity){webSecurity.ignoring().antMatchers("/**");} 全部代码我放着了 package com.oddfar.campus.framework.config;import com.oddfar.campus.framework.secur…...

Unity类银河恶魔城学习记录12-3 p125 Limit Inventory Slots源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释,可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili Inventory.cs using Newtonsoft.Json.Linq; using System.Collections; us…...

【智能排班系统】雪花算法生成分布式ID

文章目录 雪花算法介绍起源与命名基本原理与结构优势与特点应用场景 代码实现代码结构自定义机器标识RandomWorkIdChooseLocalRedisWorkIdChooselua脚本 实体类SnowflakeIdInfoWorkCenterInfo 雪花算法类配置类雪花算法工具类 说明 雪花算法介绍 在复杂而庞大的分布式系统中&a…...

sass中的导入与部分导入

文章目录 sass中的导入与部分导入1. import:传统的导入方式2. use:现代化的模块化导入 sass中的导入与部分导入 在大型前端项目中,CSS代码量往往十分庞大,为了保持其可读性、可维护性以及便于团队协作,模块化开发成为…...

工业组态 物联网组态 组态编辑器 web组态 组态插件 编辑器

体验地址:by组态[web组态插件] BY组态是一款非常优秀的纯前端的【web组态插件工具】,可无缝嵌入到vue项目,react项目等,由于是原生js开发,对于前端的集成没有框架的限制。同时由于BY组态只是一个插件,不能独…...

git可视化工具

Gitkraken GitKraken 是一款专门用于管理和协作Git仓库的图形化界面工具。它拥有友好直观的界面,使得Git的操作变得更加简单易用,尤其适合那些不熟悉Git命令行的开发者。GitKraken提供了丰富的功能,如代码审查、分支管理、仓库克隆、提交、推…...

基于单片机电子密码锁系统设计

**单片机设计介绍,基于单片机电子密码锁系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机电子密码锁系统设计概要主要包括以下几个方面: 一、系统概述 基于单片机电子密码锁系统是一个…...

点云从入门到精通技术详解100篇-基于点云与图像纹理的 道路识别(续)

目录 3.1.2 图像滤波去噪 3.2 道路纹理特征提取 3.3 基于超像素分割的图像特征表达...

《机器学习在量化投资中的应用研究》目录

机器学习在量化投资中的应用研究 获取链接:机器学习在量化投资中的应用研究_汤凌冰著_北京:电子工业出版社 更多技术书籍:技术书籍分享,前端、后端、大数据、AI、人工智能... 内容简介 《机器学习在量化投资中的应用研究…...

Spring拓展点之SmartLifecycle如何感知容器启动和关闭

Spring为我们提供了拓展点感知容器的启动与关闭,从而使我们可以在容器启动或者关闭之时进行定制的操作。Spring提供了Lifecycle上层接口,这个接口只有两个方法start和stop两个方法,但是这个接口并不是直接提供给开发者做拓展点,而…...

深入理解Java匿名内部类(day21)

在Java编程中,匿名内部类是一种非常有用的特性,它允许我们定义和实例化一个类的子类或实现一个接口,而无需给出子类的名称。这种特性使得代码更加简洁、紧凑,尤其适用于一些只使用一次的临时对象。本文将深入探讨Java匿名内部类的…...

《状态模式(极简c++)》

本文章属于专栏- 概述 - 《设计模式(极简c版)》-CSDN博客 模式说明: 方案:状态模式是一种行为设计模式,用于在对象的内部状态发生改变时改变其行为。它包括三个关键角色:上下文(Context&#x…...

Day4-Hive直播行业基础笔试题

Hive笔试题实战 短视频 题目一:计算各个视频的平均完播率 有用户-视频互动表tb_user_video_log: id uid video_id start_time end_time if_follow if_like if_retweet comment_id 1 101 2001 2021-10-01 10:00:00 2021-10-01 10:00:30 …...

mybatis批量新增数据

数据量大的时候如果在循环中执行单条新增操作,是非常慢的。那么如何在mybatis中实现批量新增数据呢? 方法 insert 标签的 foreach 属性可以用于批量插入数据。您可以使用 foreach 属性遍历一个集合,并为集合中的每个元素生成一条插入语句。…...

webrtcP2P通话流程

文章目录 webrtcP2P通话流程webrtc多对多 mesh方案webrtc多对多 mcu方案webrtc多对多 sfu方案webrtc案例测试getUserMediagetUserMedia基础示例-打开摄像头getUserMedia canvas - 截图 打开共享屏幕 webrtcP2P通话流程 在这里,stun服务器包括stun服务和turn转发服…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...