Python TensorFlow 2.6 获取 MNIST 数据
Python TensorFlow 2.6 获取 MNIST 数据
- 2 Python TensorFlow 2.6 获取 MNIST 数据
- 1.1 获取 MNIST 数据
- 1.2 检查 MNIST 数据
- 2 Python 将npz数据保存为txt
- 3 Java 获取数据并使用SVM训练
- 4 Python 测试SVM准确度
2 Python TensorFlow 2.6 获取 MNIST 数据
1.1 获取 MNIST 数据
获取 MNIST 数据
import numpy as np
import tensorflow as tffrom tensorflow.keras import datasetsprint(tf.__version__)(train_data, train_label), (test_data, test_label) = datasets.mnist.load_data()
np.savez('D:\\OneDrive\\桌面\\mnist.npz', train_data = train_data, train_label = train_label, test_data = test_data,test_label = test_label)
C:\ProgramData\Anaconda3\envs\tensorflow\python.exe E:/SourceCode/PyCharm/Test/study/exam.py
2.6.0Process finished with exit code 0
1.2 检查 MNIST 数据
import matplotlib.pyplot as plt
import numpy as npdata = np.load('D:\\OneDrive\\桌面\\mnist.npz')
print(data.files)image = data['train_data'][0:100]
label = data['train_label'].reshape(-1, )
print(label)
plt.figure(figsize = (10, 10))
for i in range(100):print('%f, %f' % (i, label[i]))plt.subplot(10, 10, i + 1)plt.imshow(image[i])
plt.show()

2 Python 将npz数据保存为txt
import numpy as np# 加载mnist数据
data = np.load('D:\\学习\\mnist.npz')
# 获取 训练数据
train_image = data['x_test']
train_label = data['y_test']
train_image = train_image.reshape(train_image.shape[0], -1)
train_image = train_image.astype(np.int32)
train_label = train_label.astype(np.int32)
train_label = train_label.reshape(-1, 1)
index = 0
file = open('D:\\OneDrive\\桌面\\predict.txt', 'w+')
for arr in train_image:file.write('{0}->{1}\n'.format(train_label[index][0], ','.join(str(i) for i in arr)))index = index + 1
file.close()

3 Java 获取数据并使用SVM训练
package com.xu.opencv;import java.io.BufferedReader;
import java.io.FileReader;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.TermCriteria;
import org.opencv.ml.Ml;
import org.opencv.ml.SVM;/*** @author Administrator*/
public class Train {static {System.loadLibrary(Core.NATIVE_LIBRARY_NAME);}public static void main(String[] args) throws Exception {predict();}public static void predict() throws Exception {SVM svm = SVM.load("D:\\OneDrive\\桌面\\ai.xml");BufferedReader reader = new BufferedReader(new FileReader("D:\\OneDrive\\桌面\\predict.txt"));Mat train = new Mat(6, 28 * 28, CvType.CV_32FC1);Mat label = new Mat(1, 6, CvType.CV_32SC1);Map<String, Mat> map = new HashMap<>(2);int index = 0;String line = null;while ((line = reader.readLine()) != null) {int[] data = Arrays.asList(line.split("->")[1].split(",")).stream().mapToInt(Integer::parseInt).toArray();for (int i = 0; i < 28 * 28; i++) {train.put(index, i, data[i]);}label.put(index, 0, Integer.parseInt(line.split("->")[0]));index++;if (index >= 6) {break;}}Mat response = new Mat();svm.predict(train, response);for (int i = 0; i < response.height(); i++) {System.out.println(response.get(i, 0)[0]);}}public static void train() throws Exception {SVM svm = SVM.create();svm.setC(1);svm.setP(0);svm.setNu(0);svm.setCoef0(0);svm.setGamma(1);svm.setDegree(0);svm.setType(SVM.C_SVC);svm.setKernel(SVM.LINEAR);svm.setTermCriteria(new TermCriteria(TermCriteria.EPS + TermCriteria.MAX_ITER, 1000, 0));Map<String, Mat> map = read("D:\\OneDrive\\桌面\\data.txt");svm.train(map.get("train"), Ml.ROW_SAMPLE, map.get("label"));svm.save("D:\\OneDrive\\桌面\\ai.xml");}public static Map<String, Mat> read(String path) throws Exception {BufferedReader reader = new BufferedReader(new FileReader(path));String line = null;Mat train = new Mat(60000, 28 * 28, CvType.CV_32FC1);Mat label = new Mat(1, 60000, CvType.CV_32SC1);Map<String, Mat> map = new HashMap<>(2);int index = 0;while ((line = reader.readLine()) != null) {int[] data = Arrays.asList(line.split("->")[1].split(",")).stream().mapToInt(Integer::parseInt).toArray();for (int i = 0; i < 28 * 28; i++) {train.put(index, i, data[i]);}label.put(index, 0, Integer.parseInt(line.split("->")[0]));index++;}map.put("train", train);map.put("label", label);reader.close();return map;}}
4 Python 测试SVM准确度
9.8% 求帮助
import cv2 as cv
import numpy as np# 加载预测数据
data = np.load('D:\\学习\\mnist.npz')
print(data.files)# 预测数据 处理
test_image = data['x_test']
test_label = data['y_test']test_image = test_image.reshape(test_image.shape[0], -1)
test_image = test_image.astype(np.float32)
test_label = test_label.astype(np.float32)
test_label = test_label.reshape(-1, 1)svm = cv.ml.SVM_load('D:\\OneDrive\\桌面\\ai.xml')predict = svm.predict(test_image)
predict = predict[1].reshape(-1, 1).astype(np.int32)
result = (predict == test_label.astype(np.int32))
print('{0}%'.format(str(result.mean() * 100)))
C:\ProgramData\Anaconda3\envs\opencv\python.exe E:/SourceCode/PyCharm/OpenCV/svm/predict.py
['x_train', 'y_train', 'x_test', 'y_test']
9.8%Process finished with exit code 0
相关文章:
Python TensorFlow 2.6 获取 MNIST 数据
Python TensorFlow 2.6 获取 MNIST 数据 2 Python TensorFlow 2.6 获取 MNIST 数据1.1 获取 MNIST 数据1.2 检查 MNIST 数据 2 Python 将npz数据保存为txt3 Java 获取数据并使用SVM训练4 Python 测试SVM准确度 2 Python TensorFlow 2.6 获取 MNIST 数据 1.1 获取 MNIST 数据 …...
EChart简单入门
echart的安装就细不讲了,直接去官网下,实在不会的直接用cdn,省的一番口舌。 cdn.staticfile.net/echarts/4.3.0/echarts.min.js 正入话题哈 什么是EChart? EChart 是一个使用 JavaScript 实现的开源可视化库,Echart支持多种常…...
阿里云8核32G云服务器租用优惠价格表,包括腾讯云和京东云
8核32G云服务器租用优惠价格表,云服务器吧yunfuwuqiba.com整理阿里云8核32G服务器、腾讯云8核32G和京东云8C32G云主机配置报价,腾讯云和京东云是轻量应用服务器,阿里云是云服务器ECS: 阿里云8核32G服务器 阿里云8核32G服务器价格…...
设计模式,工厂方法模式
工厂方法模式概述 工厂方法模式,是对简单工厂模式的进一步抽象和推广。以我个人理解,工厂方法模式就是对生产工厂的抽象,就是用一个生产工厂的工厂来进行目标对象的创建。 工厂方法模式的角色组成和简单工厂方法相比,创建了一个…...
WPF中嵌入3D模型通用结构
背景:wpf本身有提供3D的绘制,但是自己通过代码描绘出3D是比较困难的。3D库helix-toolkit支持调用第三方生成的模型,比如Blender这些,所以在wpf上使用3D就变得非常简单。这里是一个通过helix-toolkit库调用第三方生成的3d模型的样例…...
举个例子说明联邦学习
学习目标: 一周掌握 Java 入门知识 学习内容: 联邦学习是一种机器学习方法,它允许多个参与者协同训练一个共享模型,同时保持各自数据的隐私。 联邦学习概念(例子): 假设有三家医院,它们都希望…...
【Python】免费的图片/图标网站
专栏文章索引:Python 有问题可私聊:QQ:3375119339 这里是我收集的几个免费的图片/图标网站: iconfont-阿里巴巴矢量图标库icon(.ico)INCONFINDER(.ico)...
Pytorch中的nn.Embedding()
模块的输入是一个索引列表,输出是相应的词嵌入。 Embedding.weight(Tensor)–形状模块(num_embeddings,Embedding_dim)的可学习权重,初始化自(0,1)。 也就是…...
WebSocketServer后端配置,精简版
首先需要maven配置 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId><version>2.1.3.RELEASE</version></dependency> 然后加上配置类 这段代码是一个Spri…...
Python程序设计 多重循环(二)
1.打印数字图形 输入n(n<9),输出由数字组成的直角三角图形。例如,输入5,输出图形如下 nint(input("")) #开始 for i in range(1,n1):for j in range(1,i1):print(j,end"")print()#结束 2.打印字符图形 …...
前端面试题--CSS系列(一)
CSS系列--持续更新中 1.CSS预处理器有哪些类型,有什么区别2.盒模型是什么,有哪两种类型3.css选择器有哪些,优先级是怎样的,哪些属性可以继承4. 说说em/px/rem/vh/vw的区别5.元素实现水平垂直居中的方法有哪些,如果元素…...
VSCode好用插件
由于现在还是使用vue2,所以本文只记录vue2开发中好用的插件。 美化类插件不介绍了,那些貌似对生产力起不到什么大的帮助,纯粹的“唯心主义”罢了,但是如果你有兴趣的话可以查看上一篇博客:VSCode美化 1. vuter 简介&…...
Vue3:对ref、reactive的一个性能优化API
一、情景说明 我们知道,在Vue3中,想要创建响应式的变量,就要用到ref、reactive来包裹一下数据即可。 但是,这里有个损耗性能的地方 就是,被它包裹的数据,都会构建成响应式的,无论多少层次&…...
Python 用pygame简简单单实现一个打砖块
# -*- coding: utf-8 -*- # # # Copyright (C) 2024 , Inc. All Rights Reserved # # # Time : 2024/3/30 14:34 # Author : 赫凯 # Email : hekaiiii163.com # File : ballgame.py # Software: PyCharm import math import randomimport pygame import sys#…...
软考113-上午题-【计算机网络】-IPv6、无线网络、Windows命令
一、IPv6 IPv6 具有长达 128 位的地址空间,可以彻底解决 IPv4 地址不足的问题。由于 IPv4 地址是32 位二进制,所能表示的IP 地址个数为 2^32 4 294 967 29640 亿,因而在因特网上约有 40亿个P 地址。 由 32 位的IPv4 升级至 128 位的IPv6&am…...
深入浅出 -- 系统架构之负载均衡Nginx资源压缩
一、Nginx资源压缩 建立在动静分离的基础之上,如果一个静态资源的Size越小,那么自然传输速度会更快,同时也会更节省带宽,因此我们在部署项目时,也可以通过Nginx对于静态资源实现压缩传输,一方面可以节省带宽…...
基于jsp+Spring boot+mybatis的图书管理系统设计和实现
基于jspSpring bootmybatis的图书管理系统设计和实现 博主介绍:多年java开发经验,专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 作者主页 央顺技术团队 Java毕设项目精品实战案例《1000套》 欢迎点赞 收藏 ⭐留言 文末获…...
Pytorch转onnx
pytorch 转 onnx 模型需要函数 torch.onnx.export。 def export(model: Union[torch.nn.Module, torch.jit.ScriptModule, torch.jit.ScriptFunction],args: Union[Tuple[Any, ...], torch.Tensor],f: Union[str, io.BytesIO],export_params: bool True,verbose: bool False…...
苍穹外卖——项目搭建
一、项目介绍以及环境搭建 1.苍穹外卖项目介绍 1.1项目介绍 本项目(苍穹外卖)是专门为餐饮企业(餐厅、饭店)定制的一款软件产品,包括 系统管理后台 和 小程序端应用 两部分。其中系统管理后台主要提供给餐饮企业内部员…...
云原生架构(微服务、容器云、DevOps、不可变基础设施、声明式API、Serverless、Service Mesh)
前言 读完本文,你将对云原生下的核心概念微服务、容器云、DevOps、Immutable Infrastructure、Declarative-API、Serverless、Service Mesh 等有一个相对详细的了解,帮助你快速掌握云原生的核心和要点。 因题主资源有限, 这里会选用部分云服务商的组件进…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...
