【三十五】【算法分析与设计】综合练习(2),22。 括号生成,77。 组合,494。 目标和,模拟树递归,临时变量自动维护树定义,递归回溯,非树结构模拟树
22. 括号生成
数字
n
代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。示例 1:
输入:n = 3 输出:["((()))","(()())","(())()","()(())","()()()"]
示例 2:
输入:n = 1 输出:["()"]
提示:
1 <= n <= 8
【三十五】【算法分析与设计】综合练习(2),22。 括号生成,77。 组合,494。 目标和,模拟树递归,临时变量自动维护树定义,递归回溯,非树结构模拟树
定义dfs
递归函数,将叶子节点填充到ret
中。
定义 ret 记录结果。
定义path
表示树节点。
定义left,right
表示当前树节点的左右括号数量。用来正确进入到下一个子树中。
任何情况下 left>=right
必须满足才是有效的形式。
如果需要添加左括号,left<=n,left+1<=n,left<n
。
如果需要添加右括号,left>=right,left>=right+1,left>right
。
以上是正确进入子树的规则。
递归函数dfs
内部逻辑,将path
树所有叶子节点填充到ret
,相当于将左子树叶子节点填充到ret
,右子树叶子节点填充到ret
。
if (left < n) {
path.push_back('(');
left++;
dfs();
path.pop_back();
left--;
}
这一整个代码表示左子树递归。因为是模拟树所以必须时时刻刻维护path,left,right
的定义。因为这些变量都与树的定义有关。
if (left > right) {
path.push_back(')');
right++;
dfs();
path.pop_back();
right--;
}
这一整个代码表示右子树递归。因为是模拟树所以必须时时刻刻维护path,left,right
的定义。因为这些变量都与树的定义有关。
递归函数的出口,当path.size() == 2 * n
,此时是叶子节点,将path
添加到ret
中。
class Solution {
public:int left, right;string path;vector<string> ret;int n;vector<string> generateParenthesis(int _n) {n = _n;dfs();return ret;}void dfs() {if (path.size() == 2 * n) {ret.push_back(path);return;}if (left < n) {path.push_back('(');left++;dfs();path.pop_back();left--;}if (left > right) {path.push_back(')');right++;dfs();path.pop_back();right--;}}
};
77. 组合
给定两个整数
n
和k
,返回范围[1, n]
中所有可能的k
个数的组合。你可以按 任何顺序 返回答案。
示例 1:
输入:n = 4, k = 2 输出: [ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ]
示例 2:
输入:n = 1, k = 1 输出:[[1]]
提示:
1 <= n <= 20
1 <= k <= n
定义dfs
递归函数,将path
树叶子节点填充到ret
中。
思考模拟树需要定义的变量。
定义path
表示树的根节点。
定义pos
表示子树开始遍历的下标。
定义ret
记录结果。
小技巧,将n
和k
定义成全局变量,就不用每次都传入递归函数中。
递归函数的内部逻辑,将所有子树的叶子节点填充到 ret 中。
for (int i = pos; i <= n; i++) {
path.push_back(i);
int temp = pos;
pos = i + 1;
dfs();
path.pop_back();
pos = temp;
}
for 循环中的所有代码表示一个子树的递归,用for
循环变量所有的子树。
遍历下一个子树的时候,需要维护path
和pos
的定义。因为是模拟树所以必须时时刻刻维护path
,pos
的定义。因为这些变量都与树的定义有关。
递归出口,当path.size() == k
时,表示是叶子节点,此时将path
填充到ret
中。
class Solution {
public:vector<vector<int>> ret;vector<int> path;int pos = 1;int n, k;vector<vector<int>> combine(int _n, int _k) {n = _n;k = _k;dfs();return ret;}void dfs() {if (path.size() == k) {ret.push_back(path);return;}for (int i = pos; i <= n; i++) {path.push_back(i);int temp = pos;pos = i + 1;dfs();path.pop_back();pos = temp;}}
};
494. 目标和
给你一个非负整数数组
nums
和一个整数target
。向数组中的每个整数前添加
'+'
或'-'
,然后串联起所有整数,可以构造一个 表达式 :
例如,
nums = [2, 1]
,可以在2
之前添加'+'
,在1
之前添加'-'
,然后串联起来得到表达式"+2-1"
。返回可以通过上述方法构造的、运算结果等于
target
的不同 表达式 的数目。示例 1:
输入:nums = [1,1,1,1,1], target = 3 输出:5 解释:一共有 5 种方法让最终目标和为 3 。 -1 + 1 + 1 + 1 + 1 = 3 +1 - 1 + 1 + 1 + 1 = 3 +1 + 1 - 1 + 1 + 1 = 3 +1 + 1 + 1 - 1 + 1 = 3 +1 + 1 + 1 + 1 - 1 = 3
示例 2:
输入:nums = [1], target = 1 输出:1
提示:
1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 1000
定义dfs
将树叶子节点符合要求的计数。
定义path
表示树根节点。
定义pos
表示nums
下一个应该遍历下标,也就是子树的可能性。
上面的定义模拟树。
定义ret
记录结果。
定义target
表示目标和,定义为全局变量。
递归函数dfs
内部逻辑,将左子树叶子节点符合要求的计数,将右子树叶子节点符合要求的计数。
递归左右子树的时候需要时时刻刻维护path
和pos
。
path += nums[pos];
pos++;
dfs(nums);
pos--;
path -= nums[pos];
递归左子树。因为是模拟树所以必须时时刻刻维护path
,pos
的定义。因为这些变量都与树的定义有关。
path -= nums[pos];
pos++;
dfs(nums);
pos--;
path += nums[pos];
递归右子树。因为是模拟树所以必须时时刻刻维护path
,pos
的定义。因为这些变量都与树的定义有关。
递归函数的出口,当pos == nums.size()
表示是叶子节点,同时path==target
表示是符合要求的情况,此时ret++
。
class Solution {
public:int ret;int path;int pos;int target;int findTargetSumWays(vector<int>& nums, int _target) {target=_target;dfs(nums);return ret;}void dfs(vector<int>& nums) {if (pos == nums.size()) {if (path == target)ret++;return;}path += nums[pos];pos++;dfs(nums);pos--;path -= nums[pos];path -= nums[pos];pos++;dfs(nums);pos--;path += nums[pos];}
};
利用临时变量的性质自动维护树的定义。
此时就不需要手动维护树的定义。
手动维护树的定义需要进行操作,此时临时变量空间仅仅是int
类型的,所以相对于手动维护,时间会快一点。
如果临时变量是vector
类型效率可能会减低,因为每次都需要开辟vector
的空间。此时用全局变量手动维护可能会更好一点。
int 类型可以不使用全局变量,利用临时变量自动维护,此时效率可能会变快。因为加减操作也是需要时间的。
class Solution {
public:int ret;int target;int findTargetSumWays(vector<int>& nums, int _target) {target = _target;dfs(nums, 0, 0);return ret;}void dfs(vector<int>& nums, int pos, int path) {if (pos == nums.size()) {if (path == target)ret++;return;}dfs(nums, pos + 1, path + nums[pos]);dfs(nums, pos + 1, path - nums[pos]);}
};
结尾
最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。
同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。
谢谢您的支持,期待与您在下一篇文章中再次相遇!
相关文章:

【三十五】【算法分析与设计】综合练习(2),22。 括号生成,77。 组合,494。 目标和,模拟树递归,临时变量自动维护树定义,递归回溯,非树结构模拟树
22. 括号生成 数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。 示例 1: 输入:n 3 输出:["((())࿰…...
QT智能指针
一.概述 Qt智能指针是一种能够在不需要手动管理内存的情况下,自动释放资源的指针。它们是C11的std::shared_ptr的一种扩展,可以用于管理Qt对象,尤其是那些不是QObject的对象。 使用智能指针可以避免内存泄露和悬垂指针等问题,同时…...
C++笔记之pkg-config详解,以及g++、gcc编译时使用pkg-config
C++笔记之pkg-config详解,以及g++、gcc编译时使用pkg-config —— 2024-04-05 code review 文章目录 C++笔记之pkg-config详解,以及g++、gcc编译时使用pkg-config1.pkg-config详解`pkg-config` 的基本用法在 `g++`/`gcc` 编译时使用 `pkg-config`注意事项2.示例C++,普通编译…...

[Apple Vision Pro]开源项目 Beautiful Things App Template
1. 技术框架概述: - Beautiful Things App Template是一个为visionOS设计的免费开源软件(FOSS),用于展示3D模型画廊。 2. 定位: - 该模板作为Beautiful Things网站的延伸,旨在为Apple Vision Pro用户…...
Qt Remote Objects (QtRO) 笔记
简介 Qt Remote Objects (QtRO) 是 Qt 的一个进程间通信模块。 术语 Source 是指提供服务或提供功能供其他程序使用的对象,是 RPC 中的被调用端。 Replica 是指 Source 对象的代理对象,用于 RPC 中的调用端,对 Replica 的调用请求将被转发…...

Unity类银河恶魔城学习记录12-6.5 p128.5 Create item by Craft源代码
此章节在原视频缺失,此过程为根据源代码推断而来,并非原视频步骤 Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释,可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩…...

UE4_如果快速做出毛玻璃效果_假景深
UE4_如果快速做出毛玻璃效果_假景深 2022-08-20 15:02 一个SpiralBlur-SceneTexture材质节点完成效果,启用半透明材质通过修改BlurAmount数值大小调整效果spiralBlur-SceneTexture custom节点,HLSL语言float3 CurColor 0;float2 BaseUV MaterialFloa…...

c# wpf LiveCharts 绑定 简单试验
1.概要 c# wpf LiveCharts 绑定 简单试验 2.代码 <Window x:Class"WpfApp3.Window2"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schem…...

【Kafka】Kafka安装、配置、使用
【Kafka】安装Kafka 1. 安装Kafka2. Kafka使用2.0 集群分发脚本xsync(重要)2.0.1 scp命令2.0.2 rsync远程同步工具2.0.3 写一个集群分发脚本xsync (Shell 脚本) 2.1 Zookeeper安装2.2 对Kafka进行分发2.2.1 执行同步脚本2.2.2 三台云主机配置Kafka环境变量 1. 安装Kafka Kafka…...

2024HW-->Wireshark攻击流量分析
在HW中,最离不开的,肯定是看监控了,那么就要去了解一些wireshark的基础用法以及攻击的流量!!!! 1.Wireshark的基本用法 比如人家面试官给你一段流量包,你要会用 1.分组详情 对于我…...

Lafida多目数据集实测
Lafida 数据集 paper:J. Imaging | Free Full-Text | LaFiDa—A Laserscanner Multi-Fisheye Camera Dataset 官网数据:https://www.ipf.kit.edu/english/projekt_cv_szenen.php 官网:KIT-IPF-Software and Datasets - LaFiDa 标定数据下载&…...
excel wps中编码格式转换
EXCEL报表:另存为CSV格式,转换成UTF-8编码 - 简书 (jianshu.com) 经验证管用...

【游戏分析】非游戏领空追字符串来源
通过NPC名称找NPC数组 扫描 NPC名字 ASIC型 发现全部都有后缀 那么采用 字节集的方式去扫描 也是扫不到 说明:不是ASIC型字符串 扫描 NPC名字 Unicode型 没有结果 那么转换成字节集去扫描 终于发现结果了 把结果挨个修改字符串 发现 其中两个是可以用的 22和23 …...
golang 数组和切片
区别 1.数组长度固定,切片长度可变 2.数组是深拷贝,切片是浅拷贝,切片是引用类型 扩容规则 不同版本不一样 https://www.jb51.net/article/280481.htm#_lab2_2_1 go1.18 1.如果期望容量大于当前容量的两倍就会使用期望容量; 2.如…...

物联网实战--入门篇之(九)安卓QT--开发框架
目录 一、QT简介 二、开发环境 三、编码风格 四、设计框架 五、总结 一、QT简介 QT是一款以C为基础的开发工具,已经包含了很多常用的库,除了基本的GUI以外,还有网络、数据库、多媒体、进程通信、串口、蓝牙等常用库,开发起来…...

【leetcode面试经典150题】16.接雨水(C++)
【leetcode面试经典150题】专栏系列将为准备暑期实习生以及秋招的同学们提高在面试时的经典面试算法题的思路和想法。本专栏将以一题多解和精简算法思路为主,题解使用C语言。(若有使用其他语言的同学也可了解题解思路,本质上语法内容一致&…...
互联网面经
腾讯视频 代码:反转链表,单例模式 RAII,哪里用到 Web服务器怎样处理请求 get\post流程 项目使用的还是http1.0吗;http2.0:二进制、首部压缩、主动推送;Https Epoll/select/poll ET/LT 进程地址空间。3…...
xss介绍及作用
XSS(Cross-Site Scripting)是一种常见的网络安全漏洞,它允许攻击者向网站注入恶意的客户端脚本代码,从而在用户的浏览器中执行这些代码。 XSS攻击的原理是攻击者将恶意脚本插入到网页中的用户输入数据中,当其他用户访…...

PostgreSQL入门到实战-第二弹
PostgreSQL入门到实战 PostgreSQL安装之Windows官网地址PostgreSQL概述Windows上安装PostgreSQL更新计划 PostgreSQL安装之Windows 官网地址 声明: 由于操作系统, 版本更新等原因, 文章所列内容不一定100%复现, 还要以官方信息为准 https://www.postgresql.org/PostgreSQL概…...

3-【PS让图片动起来】系列1-【导入素材】
【问题介绍】仅做图片,现在很难吸引用户视线,越来越多地图片需要动起来增添意境,比如春日樱花花瓣掉落、冬季雪花纷纷,今天来学学怎么用PS的时间轴,让图片动起来~ 如下图,一副冬日雪景图,想给画…...

04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...
微服务通信安全:深入解析mTLS的原理与实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言:微服务时代的通信安全挑战 随着云原生和微服务架构的普及,服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...

sshd代码修改banner
sshd服务连接之后会收到字符串: SSH-2.0-OpenSSH_9.5 容易被hacker识别此服务为sshd服务。 是否可以通过修改此banner达到让人无法识别此服务的目的呢? 不能。因为这是写的SSH的协议中的。 也就是协议规定了banner必须这么写。 SSH- 开头,…...
Monorepo架构: Nx Cloud 扩展能力与缓存加速
借助 Nx Cloud 实现项目协同与加速构建 1 ) 缓存工作原理分析 在了解了本地缓存和远程缓存之后,我们来探究缓存是如何工作的。以计算文件的哈希串为例,若后续运行任务时文件哈希串未变,系统会直接使用对应的输出和制品文件。 2 …...