当前位置: 首页 > news >正文

分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测

分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测

目录

    • 分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测
      • 分类效果
      • 基本介绍
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测(完整源码和数据),优化参数为,优化RBF 核函数gam和sig,运行环境为Matlab2018及以上。
2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换excel数据就可以用;
3.程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据获取方式资源处直接下载Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测(完整源码和数据)。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集%
P_train = res(1: 250, 1: 12)';
T_train = res(1: 250, 13)';
M = size(P_train, 2);P_test = res(251: end, 1: 12)';
T_test = res(251: end, 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);
t_train = T_train;
t_test  = T_test;%% LS参数设置
type        = 'c';             % 模型类型 分类
kernel_type = 'RBF_kernel';    % 线性核函数
codefct     = 'code_OneVsOne'; % 一对一编码分类
fun = @getObjValue;  % 目标函数
dim = 2;             % 优化参数个数
ub  = [300, 300];  % 优化参数目标上限
lb  = [1, 1];   % 优化参数目标下限pop = 8;             % 数量
Max_iteration = 20; % 最大迭代次数   c = Best_pos(1);  
g = Best_pos(2);%% 编码
[t_train,codebook,old_codebook] = code(t_train,codefct);%% 建立模型
model = initlssvm(p_train,t_train,type,c,g,kernel_type,codefct); %SSA%% 训练模型
model = trainlssvm(model);%% 测试模型
t_sim1 = simlssvm(model,p_train);
t_sim2 = simlssvm(model,p_test); T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);
%% 性能评价
error1 = sum((T_sim1' == T_train))/M * 100 ;
error2 = sum((T_sim2' == T_test))/N * 100 ;%% 优化曲线
figure
plot(curve, 'linewidth',1.5);
title('GWO-LSSVM')
xlabel('The number of iterations')
ylabel('Fitness')
grid on;
%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', 'GWO-LSSVM预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', 'GWO-LSSVM预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关文章:

分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测

分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测 目录 分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据…...

使用PHP进行极验验证码动态参数提取与逆向分析

在网络安全领域,逆向工程和验证码破解是常见的技术挑战之一。极验验证码作为一种常见的人机验证工具,其动态参数的提取和逆向分析对于验证码的破解至关重要。本文将介绍如何使用PHP语言进行极验验证码动态参数的提取与逆向分析。 1. 准备工作 在开始之前…...

43.1k star, 免费开源的 markdown 编辑器 MarkText

43.1k star, 免费开源的 markdown 编辑器 MarkText 分类 开源分享 项目名: MarkText -- 简单而优雅的开源 Markdown 编辑器 Github 开源地址: https://github.com/marktext/marktext 官网地址: MarkText 支持平台: Linux, macOS 以及 Win…...

ArcGIS Pro怎么进行挖填方计算

在工程实施之前,我们需要充分利用地形,结合实际因素,通过挖填方计算项目的标高,以达到合理控制成本的目的,这里为大家介绍一下ArcGIS Pro中挖填方计算的方法,希望能对你有所帮助。 数据来源 教程所使用的…...

POLY - Survival Melee Weapons

一个轻便、有趣且灵活的低多边形资源包,非常适合原型设计或添加到低多边形世界中。超过50种近战武器、刀、斧、棍棒、棍棒等。 此套餐非常适合第三人称或自上而下的观看。 除此之外,资产还包括开发生存游戏可能需要的任何细节。 整个包是以多边形风格创建的,可以与其他多边…...

【ARMv7-M】| 01——阅读笔记 | 简介|应用程序级编程和内存模型

系列文章目录 【ARMv7-M】| 01——阅读笔记 | 简介|应用程序级编程和内存模型 失败了也挺可爱,成功了就超帅。 文章目录 前言1、简介2、应用程序级编程模型2.1 编程模式和访问等级2.2 数据类型和运算操作2.3 寄存器和执行状态1.2.4 异常和中断1.2.5 浮点单元寄存器…...

用Python做一个4399游戏脚本原来这么简单 !(内含完整思路)

说明 简述:本文将以4399小游戏《宠物连连看经典版2》作为测试案例,通过识别小图标,模拟鼠标点击,快速完成配对。对于有兴趣学习游戏脚本的同学有一定的帮助。 运行环境:Win10/Python3.5。 主要模块:win3…...

【计算机网络】应用层——HTTPS协议详解

文章目录 1. HTTPS 协议简介2. 了解“加密”3. HTTPS 保证数据安全传输的三大机制3.1 引入对称加密3.2 引入非对称加密3.3 引入“SSL/TLS证书”(防止中间人攻击)3.4 HTTPS安全机制总结 📄前言: 前面的文章已经对 HTTP 协议 进行了…...

私家侦探如何追踪难以找到的人?

私家侦探如何追踪难以找到的人? 私家侦探经常受雇于无从下手的情况,要在稀缺的信息中寻找蛛丝马迹,追踪那些难以捉摸的目标。在众多情境中,私家侦探或许能挖掘出丰富的信息。然而,若目标人物决心隐匿行踪,逃…...

一文讲透亚马逊云命令行使用

从配置开始 学习使用亚马逊云,自然免不了使用命令行工具,首先我们从下载和配置开始: 现在都使用V2版本的命令行工具,可以从官网下载最新的二进制安装包。1 首先是配置凭证: aws configure 输入之后会提示输入AK/SK…...

感染了后缀为.jayy勒索病毒如何应对?数据能够恢复吗?

导言: 在当今数字化的世界中,网络安全已经成为了每个人都需要关注的重要议题。而勒索病毒作为网络安全领域中的一大威胁,不断地演变和升级,给个人和组织带来了严重的损失和困扰。近期,一种名为.jayy的勒索病毒引起了广…...

一键快速彻底卸载:Mac软件轻松删除,瞬间释放磁盘空间

在接手使用前任员工遗留的Mac电脑时,经常面临的一个问题是内置了大量的非必要软件,这些软件不仅侵占了硬盘资源,还可能影响电脑整体性能。因此,迅速有效地删除这些冗余软件,以达成设备清爽、高效的初始化状态极其重要。…...

(React Hooks)前端八股文修炼Day9

一 对 React Hook 的理解,它的实现原理是什么 React Hooks是React 16.8版本中引入的一个特性,它允许你在不编写类组件的情况下,使用state以及其他的React特性。Hooks的出现主要是为了解决类组件的一些问题,如复杂组件难以理解、难…...

工厂方法模式:灵活的创建对象实例

在软件开发中,我们经常需要创建对象,但直接new一个实例可能会导致代码的耦合性增加,降低了代码的灵活性和可维护性。工厂方法模式(Factory Method Pattern)是一种创建型设计模式,它提供了一种创建对象的接口…...

vue-codeirror编辑器vue3中的使用

vue-codeirror编辑器vue3中的使用 <script lang"ts" setup> import { ref,reactive } from vue; import { Codemirror } from "vue-codemirror"; import { oneDark } from "codemirror/theme-one-dark"; import { json } from codemirror/…...

搭建python编译环境

目录 1.安装依赖包 2.安装失败进行换源 3. 更新系统 通过C 语言调用 Python 代码&#xff0c;需要先安装 libpython3 的 dev 依赖库&#xff08;不同的 ubuntu 版本下&#xff0c; python 版本 可能会有差异&#xff0c; 比如ubuntu 22.04 里是 libpython3.10-dev &#xff09…...

微信小程序登录流程

文章目录 1. 用户触发登录操作2. 获取临时登录凭证3. 发送登录凭证到服务器4. 后端使用 code 获取 session_key 和 openid5. 后端保存 session_key 和 openid 返回token6. 前端保存登录态 1. 用户触发登录操作 用户在小程序内部点击登录按钮或进行需要登录权限的操作&#xff…...

FPGA + 图像处理(三)生成3x3像素矩阵

前言 生成NxN的像素矩阵是对图像进行各类滤波操作的基本前提&#xff0c;本文介绍一种通过bram生成3x3矩阵的方法。 程序 生成bram核 因为本文介绍的是基于bram生成的3x3像素矩阵&#xff0c;所以要先生成两个bram核&#xff0c;用于缓存前两行图像数据 在 IP catalog中选…...

Redis安装说明2

Redis安装说明 1.3.2.指定配置启动 如果要让Redis以后台方式启动&#xff0c;则必须修改Redis配置文件&#xff0c;就在我们之前解压的redis安装包下&#xff08;/usr/local/src/redis-6.2.6&#xff09;&#xff0c;名字叫redis.conf&#xff1a; 我们先将这个配置文件备份一…...

ArcGIS10.8保姆式安装教程

ArcGIS 10.8是一款非常强大的地理信息系统软件&#xff0c;用于创建、管理、分析和可视化地理数据。以下是ArcGIS 10.8的详细安装教程&#xff1a; 确保系统满足安装要求 在开始安装之前&#xff0c;请确保您的计算机满足以下系统要求&#xff1a; 操作系统&#xff1a;Windo…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...