当前位置: 首页 > news >正文

分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测

分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测

目录

    • 分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测
      • 分类效果
      • 基本介绍
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测(完整源码和数据),优化参数为,优化RBF 核函数gam和sig,运行环境为Matlab2018及以上。
2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换excel数据就可以用;
3.程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据获取方式资源处直接下载Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测(完整源码和数据)。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集%
P_train = res(1: 250, 1: 12)';
T_train = res(1: 250, 13)';
M = size(P_train, 2);P_test = res(251: end, 1: 12)';
T_test = res(251: end, 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);
t_train = T_train;
t_test  = T_test;%% LS参数设置
type        = 'c';             % 模型类型 分类
kernel_type = 'RBF_kernel';    % 线性核函数
codefct     = 'code_OneVsOne'; % 一对一编码分类
fun = @getObjValue;  % 目标函数
dim = 2;             % 优化参数个数
ub  = [300, 300];  % 优化参数目标上限
lb  = [1, 1];   % 优化参数目标下限pop = 8;             % 数量
Max_iteration = 20; % 最大迭代次数   c = Best_pos(1);  
g = Best_pos(2);%% 编码
[t_train,codebook,old_codebook] = code(t_train,codefct);%% 建立模型
model = initlssvm(p_train,t_train,type,c,g,kernel_type,codefct); %SSA%% 训练模型
model = trainlssvm(model);%% 测试模型
t_sim1 = simlssvm(model,p_train);
t_sim2 = simlssvm(model,p_test); T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);
%% 性能评价
error1 = sum((T_sim1' == T_train))/M * 100 ;
error2 = sum((T_sim2' == T_test))/N * 100 ;%% 优化曲线
figure
plot(curve, 'linewidth',1.5);
title('GWO-LSSVM')
xlabel('The number of iterations')
ylabel('Fitness')
grid on;
%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', 'GWO-LSSVM预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', 'GWO-LSSVM预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关文章:

分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测

分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测 目录 分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据…...

使用PHP进行极验验证码动态参数提取与逆向分析

在网络安全领域,逆向工程和验证码破解是常见的技术挑战之一。极验验证码作为一种常见的人机验证工具,其动态参数的提取和逆向分析对于验证码的破解至关重要。本文将介绍如何使用PHP语言进行极验验证码动态参数的提取与逆向分析。 1. 准备工作 在开始之前…...

43.1k star, 免费开源的 markdown 编辑器 MarkText

43.1k star, 免费开源的 markdown 编辑器 MarkText 分类 开源分享 项目名: MarkText -- 简单而优雅的开源 Markdown 编辑器 Github 开源地址: https://github.com/marktext/marktext 官网地址: MarkText 支持平台: Linux, macOS 以及 Win…...

ArcGIS Pro怎么进行挖填方计算

在工程实施之前,我们需要充分利用地形,结合实际因素,通过挖填方计算项目的标高,以达到合理控制成本的目的,这里为大家介绍一下ArcGIS Pro中挖填方计算的方法,希望能对你有所帮助。 数据来源 教程所使用的…...

POLY - Survival Melee Weapons

一个轻便、有趣且灵活的低多边形资源包,非常适合原型设计或添加到低多边形世界中。超过50种近战武器、刀、斧、棍棒、棍棒等。 此套餐非常适合第三人称或自上而下的观看。 除此之外,资产还包括开发生存游戏可能需要的任何细节。 整个包是以多边形风格创建的,可以与其他多边…...

【ARMv7-M】| 01——阅读笔记 | 简介|应用程序级编程和内存模型

系列文章目录 【ARMv7-M】| 01——阅读笔记 | 简介|应用程序级编程和内存模型 失败了也挺可爱,成功了就超帅。 文章目录 前言1、简介2、应用程序级编程模型2.1 编程模式和访问等级2.2 数据类型和运算操作2.3 寄存器和执行状态1.2.4 异常和中断1.2.5 浮点单元寄存器…...

用Python做一个4399游戏脚本原来这么简单 !(内含完整思路)

说明 简述:本文将以4399小游戏《宠物连连看经典版2》作为测试案例,通过识别小图标,模拟鼠标点击,快速完成配对。对于有兴趣学习游戏脚本的同学有一定的帮助。 运行环境:Win10/Python3.5。 主要模块:win3…...

【计算机网络】应用层——HTTPS协议详解

文章目录 1. HTTPS 协议简介2. 了解“加密”3. HTTPS 保证数据安全传输的三大机制3.1 引入对称加密3.2 引入非对称加密3.3 引入“SSL/TLS证书”(防止中间人攻击)3.4 HTTPS安全机制总结 📄前言: 前面的文章已经对 HTTP 协议 进行了…...

私家侦探如何追踪难以找到的人?

私家侦探如何追踪难以找到的人? 私家侦探经常受雇于无从下手的情况,要在稀缺的信息中寻找蛛丝马迹,追踪那些难以捉摸的目标。在众多情境中,私家侦探或许能挖掘出丰富的信息。然而,若目标人物决心隐匿行踪,逃…...

一文讲透亚马逊云命令行使用

从配置开始 学习使用亚马逊云,自然免不了使用命令行工具,首先我们从下载和配置开始: 现在都使用V2版本的命令行工具,可以从官网下载最新的二进制安装包。1 首先是配置凭证: aws configure 输入之后会提示输入AK/SK…...

感染了后缀为.jayy勒索病毒如何应对?数据能够恢复吗?

导言: 在当今数字化的世界中,网络安全已经成为了每个人都需要关注的重要议题。而勒索病毒作为网络安全领域中的一大威胁,不断地演变和升级,给个人和组织带来了严重的损失和困扰。近期,一种名为.jayy的勒索病毒引起了广…...

一键快速彻底卸载:Mac软件轻松删除,瞬间释放磁盘空间

在接手使用前任员工遗留的Mac电脑时,经常面临的一个问题是内置了大量的非必要软件,这些软件不仅侵占了硬盘资源,还可能影响电脑整体性能。因此,迅速有效地删除这些冗余软件,以达成设备清爽、高效的初始化状态极其重要。…...

(React Hooks)前端八股文修炼Day9

一 对 React Hook 的理解,它的实现原理是什么 React Hooks是React 16.8版本中引入的一个特性,它允许你在不编写类组件的情况下,使用state以及其他的React特性。Hooks的出现主要是为了解决类组件的一些问题,如复杂组件难以理解、难…...

工厂方法模式:灵活的创建对象实例

在软件开发中,我们经常需要创建对象,但直接new一个实例可能会导致代码的耦合性增加,降低了代码的灵活性和可维护性。工厂方法模式(Factory Method Pattern)是一种创建型设计模式,它提供了一种创建对象的接口…...

vue-codeirror编辑器vue3中的使用

vue-codeirror编辑器vue3中的使用 <script lang"ts" setup> import { ref,reactive } from vue; import { Codemirror } from "vue-codemirror"; import { oneDark } from "codemirror/theme-one-dark"; import { json } from codemirror/…...

搭建python编译环境

目录 1.安装依赖包 2.安装失败进行换源 3. 更新系统 通过C 语言调用 Python 代码&#xff0c;需要先安装 libpython3 的 dev 依赖库&#xff08;不同的 ubuntu 版本下&#xff0c; python 版本 可能会有差异&#xff0c; 比如ubuntu 22.04 里是 libpython3.10-dev &#xff09…...

微信小程序登录流程

文章目录 1. 用户触发登录操作2. 获取临时登录凭证3. 发送登录凭证到服务器4. 后端使用 code 获取 session_key 和 openid5. 后端保存 session_key 和 openid 返回token6. 前端保存登录态 1. 用户触发登录操作 用户在小程序内部点击登录按钮或进行需要登录权限的操作&#xff…...

FPGA + 图像处理(三)生成3x3像素矩阵

前言 生成NxN的像素矩阵是对图像进行各类滤波操作的基本前提&#xff0c;本文介绍一种通过bram生成3x3矩阵的方法。 程序 生成bram核 因为本文介绍的是基于bram生成的3x3像素矩阵&#xff0c;所以要先生成两个bram核&#xff0c;用于缓存前两行图像数据 在 IP catalog中选…...

Redis安装说明2

Redis安装说明 1.3.2.指定配置启动 如果要让Redis以后台方式启动&#xff0c;则必须修改Redis配置文件&#xff0c;就在我们之前解压的redis安装包下&#xff08;/usr/local/src/redis-6.2.6&#xff09;&#xff0c;名字叫redis.conf&#xff1a; 我们先将这个配置文件备份一…...

ArcGIS10.8保姆式安装教程

ArcGIS 10.8是一款非常强大的地理信息系统软件&#xff0c;用于创建、管理、分析和可视化地理数据。以下是ArcGIS 10.8的详细安装教程&#xff1a; 确保系统满足安装要求 在开始安装之前&#xff0c;请确保您的计算机满足以下系统要求&#xff1a; 操作系统&#xff1a;Windo…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...