当前位置: 首页 > news >正文

Python---Numpy线性代数


1.数组和矩阵操作:
创建数组和矩阵:np.array, np.matrix
基本的数组操作:形状修改、大小调整、转置等

import numpy as np# 创建一个 2x3 的数组
A = np.array([[1, 2, 3], [4, 5, 6]])
print("数组 A:\n", A)# 将数组 A 转换为矩阵
B = np.matrix(A)
print("矩阵 B:\n", B)
# 例一:
# 定义两个矩阵 C 和 D
C = np.array([[1, 2], [3, 4]])
D = np.array([[5, 6], [7, 8]])# 进行矩阵乘法
result = np.dot(C, D)
print("矩阵乘法结果:\n", result)# 例二:
x1 = np.array([[1, 2, 3], [4, 5, 6]])x2 = np.array([[1, 2], [3, 4],[5, 6]])# 矩阵乘法
print(x1.dot(x2))# 计算对角线之和
print(x2.trace())


2.线性代数运算:
矩阵乘法:np.dot, np.matmul
内积和外积:np.inner, np.outer
点积:np.dot (对于一维数组)
对角线之和:np.trace()

# 定义系数矩阵和常数向量
coefficients = np.array([[3, 1], [1, 2]])
constants = np.array([9, 8])# 求解线性方程组
solution = np.linalg.solve(coefficients, constants)
print("线性方程组的解:\n", solution)

3.特征值和特征向量:
计算矩阵的特征值和特征向量:np.linalg.eig
特征值分解:np.linalg.eigvalsh, np.linalg.eigh

# 定义一个需要计算特征值和特征向量的矩阵
E = np.array([[1, 2], [2, 1]])# 计算特征值和特征向量
eigenvalues, eigenvectors = np.linalg.eig(E)
print("特征值:\n", eigenvalues)
print("特征向量:\n", eigenvectors)

4.矩阵分解:
奇异值分解(SVD):np.linalg.svd
卢分解(LU):np.linalg.lu
特征值分解(如前所述)

# 定义一个用于奇异值分解的矩阵
F = np.array([[2, 3], [4, 5]])# 进行奇异值分解
U, S, VT = np.linalg.svd(F)
print("U 矩阵:\n", U)
print("奇异值:\n", S)
print("VT 矩阵:\n", VT)

5.线性方程组求解:
解决线性方程组:np.linalg.solve
计算矩阵的逆:np.linalg.inv

# 定义一个矩阵
G = np.array([[1, 2], [3, 4]])# 计算行列式
det_G = np.linalg.det(G)
print("矩阵 G 的行列式:\n", det_G)# 计算矩阵的迹
trace_G = np.trace(G)
print("矩阵 G 的迹:\n", trace_G)


6.行列式和迹:
计算矩阵的行列式:np.linalg.det
计算矩阵的迹:np.trace

# 创建一个 3x3 矩阵
matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])# 计算矩阵的行列式
det_value = np.linalg.det(matrix)
print("矩阵的行列式为:", det_value)
# 使用之前定义的矩阵
trace_value = np.trace(matrix)
print("矩阵的迹为:", trace_value)

7.范数和条件数:
计算向量的范数:np.linalg.norm
计算矩阵的条件数:np.linalg.cond

# 定义一个向量
vector = np.array([3, 4])# 计算向量的 L2 范数
norm = np.linalg.norm(vector)
print("向量的 L2 范数:\n", norm)

8.三角函数和相关函数:
正弦、余弦等三角函数:np.sin, np.cos 等
反三角函数:np.arcsin, np.arccos 等

# 定义一个包含两个元素的数组,代表角度(以弧度为单位)
angles = np.array([0, np.pi / 2])# 计算正弦和余弦值
sine_values = np.sin(angles)
cosine_values = np.cos(angles)print("角度的正弦值:", sine_values)
print("角度的余弦值:", cosine_values)# 定义一个包含两个元素的数组,代表正弦和余弦值
sine_cosine_values = np.array([np.sin(np.pi / 4), np.cos(np.pi / 4)])# 计算反正弦和反余弦值
arc_sine_value = np.arcsin(sine_cosine_values[0])
arc_cosine_value = np.arccos(sine_cosine_values[1])print("反正弦值:", arc_sine_value)
print("反余弦值:", arc_cosine_value)

相关文章:

Python---Numpy线性代数

1.数组和矩阵操作: 创建数组和矩阵:np.array, np.matrix 基本的数组操作:形状修改、大小调整、转置等 import numpy as np# 创建一个 2x3 的数组 A np.array([[1, 2, 3], [4, 5, 6]]) print("数组 A:\n", A)# 将数组 A 转换为矩阵…...

react+ echarts 轮播饼图

react echarts 轮播饼图 图片示例 代码 import * as echarts from echarts; import { useEffect } from react; import styles from ./styles.scss;const Student (props) > {const { dataList, title } props;// 过滤数据const visionList [{ value: 1048, name: Se…...

政安晨:【深度学习神经网络基础】(三)—— 激活函数

目录 线性激活函数 阶跃激活函数 S型激活函数 双曲正切激活函数 修正线性单元 Softmax激活函数 偏置扮演什么角色? 政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: 政安晨的机器学习笔记 希望政安晨的博客能够对您有所裨…...

使用tomcat里的API - servlet 写动态网页

一、创建一个新的Maven空项目 首次创建maven项目的时候,会自动从maven网站上下载一些依赖组件(这个过程需要保证网络稳定,否则后续打包一些操作会出现一些问题) ps:校园网可能会屏蔽一些网站,可能会导致maven的依赖…...

从0到1搭建文档库——sphinx + git + read the docs

sphinx git read the docs 目录 一、sphinx 1 sphinx的安装 2 本地构建文件框架 1)创建基本框架(生成index.rst ;conf.py) conf.py默认内容 index.rst默认内容 2)生成页面(Windows系统下&#xf…...

EasyExcel 校验后导入

引入pom <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.3.3</version></dependency>触发校验类 import com.baomidou.mybatisplus.extension.api.R; import lombok.experimental…...

【星计划★C语言】c语言初相识:探索编程之路

&#x1f308;个人主页&#xff1a;聆风吟_ &#x1f525;系列专栏&#xff1a;星计划★C语言、Linux实践室 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;前言一. ⛳️第一个c语言程序二. ⛳️数据类型2.1 &#x1f514;数据单位2.2 &…...

搜维尔科技:借助 ARVR 的力量缩小现代制造业的技能差距

借助ARVR的力量缩小现代制造业的技能差距 搜维尔科技&#xff1a;Senseglove案例-扩展机器人技术及其VR应用...

数据结构之栈和队列

1.前言 大家好久不见&#xff0c;这段时间由于忙去了。就没有即使维护我的博客&#xff0c;先给大家赔个不是。 我们还是规矩不乱&#xff0c;先赞后看~ 今天讲的内容是数据结构中非常重要的一个部分&#xff1a;栈和队列。它在今后的学习中也会再次出现&#xff08;c&#…...

centos安装使用elasticsearch

1.首先可以在 Elasticsearch 官网 Download Elasticsearch | Elastic 下载安装包 2. 在指定的位置(我的是/opt/zhong/)解压安装包 tar -zxvf elasticsearch-7.12.1-linux-x86_64.tar.gz 3.启动es-这种方式启动会将日志全部打印在当前页面&#xff0c;一旦使用 ctrlc退出就会导…...

4.7学习总结

java学习 一.Stream流 (一.)概念: Stream将要处理的元素集合看作一种流&#xff0c;在流的过程中&#xff0c;借助Stream API对流中的元素进行操作&#xff0c;比如&#xff1a;筛选、排序、聚合等。Stream流是对集合&#xff08;Collection&#xff09;对象功能的增强&…...

自定义gitlog格式

git log命令非常强大而好用&#xff0c;在复杂系统的版本管理中扮演着重要的角色&#xff0c;但默认的git log命令显示出的东西实在太丑&#xff0c;不好好打扮一下根本没法见人&#xff0c;打扮好了用alias命令拍个照片&#xff0c;就正式出道了&#xff01; 在使用git查看lo…...

Redission--分布式锁

Redission的锁的好处 Redission分布式锁的底层是setnx和lua脚本(保证原子性) 1.是可重入锁。 2.Redisson 锁支持自动续期功能&#xff0c;这可以帮助我们合理控制分布式锁的有效时长&#xff0c;当业务逻辑执行时间超出了锁的过期时间&#xff0c;锁会自动续期&#xff0c;避免…...

非关系型数据库(缓存数据库)redis的集群

目录 一.群集模式——Cluster 1.原理 2.作用 3.特点 4.工作机制 哈希槽 哈希槽的分配 哈希槽可按照集群主机数平均分配&#xff08;默认分配&#xff09; 根据主机的性能以及功能自定义分配 redis集群的分片 分片 如何找到给定key的分片 优势 二. 搭建Redis群集…...

MySQL:表的约束(上)

文章目录 空属性默认值列描述zerofill主键 本篇总结的是MySQL中关于表的约束部分的内容 空属性 在进行表的创建时&#xff0c;会有两个值&#xff0c;null和not null&#xff0c;而数据库默认的字段基本都是空&#xff0c;但是在实际的开发过程中要保证字段不能为空&#xff…...

树莓派5使用体验

原文地址&#xff1a;树莓派5使用体验 - Pleasure的博客 下面是正文内容&#xff1a; 前言 好久没有关于教程方面的博文了&#xff0c;由于最近打算入门嵌入式系统&#xff0c;所以就去购入了树莓派5开发板 树莓派5是2023年10月23日正式发售的&#xff0c;过去的时间不算太远吧…...

代码随想录算法训练营第42天| 背包问题、416. 分割等和子集

01 背包 题目描述&#xff1a;有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i]&#xff0c;得到的价值是value[i] 。每件物品只能用一次&#xff0c;求解将哪些物品装入背包里物品价值总和最大。 二维dp数组01背包&#xff1a; 确定dp数组以及下标的含义 …...

Node.js安装及环境配置指南

Node.js安装及环境配置指南 一、Node.js的安装 安装Node.js之前&#xff0c;首先需要确保你的电脑已经安装了合适的编译器和开发环境。Node.js是一个开源的、跨平台的JavaScript运行环境&#xff0c;它使得JavaScript可以在服务器端运行。 下载Node.js安装包 访问Node.js的…...

【Java基础】面试题汇总

Java基础面试题1. JVM vs JDK vs JRE 2. 什么是字节码?采用字节码的好处是什么?3. 为什么说 Java 语言“编译与解释并存”&#xff1f;4. AOT 有什么优点&#xff1f;为什么不全部使用 AOT 呢&#xff1f;5. Java 和 C 的区别&#xff1f;6. Java 中的基本数据类型&#xff1…...

数据库事务的超级详细讲解,包括事务特性、事务隔离级别、MVCC(多版本并发控制)

数据库事务&#xff1a; 主要有事务特性&#xff0c;事务的隔离级别&#xff0c;MVCC。 事务特性&#xff1a; 事务&#xff08;Transaction&#xff09;是指作为单个逻辑工作单元执行的一系列操作&#xff0c;这些操作要么全部成功执行&#xff0c;要么全部不执行&#xff…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

Docker拉取MySQL后数据库连接失败的解决方案

在使用Docker部署MySQL时&#xff0c;拉取并启动容器后&#xff0c;有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致&#xff0c;包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因&#xff0c;并提供解决方案。 一、确认MySQL容器的运行状态 …...