代码随想录算法训练营第42天| 背包问题、416. 分割等和子集
01 背包
题目描述:有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
二维dp数组01背包:
- 确定dp数组以及下标的含义
对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

-
确定递推公式
再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。那么可以有两个方向推出来dp[i][j],- 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
- 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
-
初始化
dp[i][j]是由其左侧和左上方数据推导出来的,因此要初始化dp[i][0]列和dp[0][j]行的数据,背包重量为0时,背包内物品的价值为零,dp[i][0]列为0。dp[0][i]行的数据,当背包容量j≥wieght[j]时,dp[0][j]=value[j],其他时候为零。 -
遍历顺序
先遍历还是weight还是value都可以。
#include<iostream>
#include<vector>
using namespace std;void slove(int m, int n){vector<int> wight;vector<int> value;int x;for (int i = 0; i < m;i++){cin>>x;wight.push_back(x);}for (int i = 0; i < m;i++){cin>>x;value.push_back(x);}vector<vector<int>> dp(m,vector<int>(n+1,0));for(int j = 0; j <= n; j++){if(j>=wight[0]){dp[0][j] = value[0];}}for (int i = 1; i < m; i++){for (int j = 1; j <= n; j++){if(j < wight[i]){dp[i][j] = dp[i-1][j];} else {dp[i][j] = max(dp[i-1][j], dp[i-1][j-wight[i]]+value[i]);}}}cout << dp[m-1][n] <<endl;
}int main(){int m,n;cin>>m>>n;slove(m,n);
}
一维dp数组01背包:
对于背包问题其实状态都是可以压缩的。
在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);
与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。
但是这里要注意,dp数组的遍历要为倒序遍历,倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!
#include<iostream>
#include<vector>
using namespace std;void slove(int m, int n){vector<int> wight;vector<int> value;int x;for (int i = 0; i < m;i++){cin>>x;wight.push_back(x);}for (int i = 0; i < m;i++){cin>>x;value.push_back(x);}vector<int> dp(n+1,0);for (int i = 0; i < m; i++){for (int j = n; j >= 0; j--){if(j >= wight[i]){dp[j] = max(dp[j], dp[j-wight[i]]+value[i]);}}}cout << dp[n] <<endl;
}int main(){int m,n;cin>>m>>n;slove(m,n);
}
416. 分割等和子集
题目链接:分割等和子集
题目描述:给你一个 只包含正整数 的 非空 数组
nums。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
解题思想:
要明确本题中我们要使用的是01背包,因为元素我们只能用一次。
回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。
那么来一一对应一下本题,看看背包问题如何来解决。
只有确定了如下四点,才能把01背包问题套到本题上来。
- 背包的体积为sum / 2
- 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
- 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
- 背包中每一个元素是不可重复放入。
后面的解题思路就和01背包问题相同
class Solution {
public:bool canPartition(vector<int>& nums) {int sum = 0;int target = 0;for (int num : nums)sum += num;if (sum % 2)return false;elsetarget = sum / 2;vector<int> dp(target + 1, 0);for (int i = 0; i < nums.size(); i++) {for (int j = target; j >= nums[i]; j--) {dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);}}if (dp[target] == target) {return true;}return false;}
};
相关文章:
代码随想录算法训练营第42天| 背包问题、416. 分割等和子集
01 背包 题目描述:有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。 二维dp数组01背包: 确定dp数组以及下标的含义 …...
Node.js安装及环境配置指南
Node.js安装及环境配置指南 一、Node.js的安装 安装Node.js之前,首先需要确保你的电脑已经安装了合适的编译器和开发环境。Node.js是一个开源的、跨平台的JavaScript运行环境,它使得JavaScript可以在服务器端运行。 下载Node.js安装包 访问Node.js的…...
【Java基础】面试题汇总
Java基础面试题1. JVM vs JDK vs JRE 2. 什么是字节码?采用字节码的好处是什么?3. 为什么说 Java 语言“编译与解释并存”?4. AOT 有什么优点?为什么不全部使用 AOT 呢?5. Java 和 C 的区别?6. Java 中的基本数据类型࿱…...
数据库事务的超级详细讲解,包括事务特性、事务隔离级别、MVCC(多版本并发控制)
数据库事务: 主要有事务特性,事务的隔离级别,MVCC。 事务特性: 事务(Transaction)是指作为单个逻辑工作单元执行的一系列操作,这些操作要么全部成功执行,要么全部不执行ÿ…...
鸿蒙Lottie动画-实现控制动画的播放、暂停、倍速播放、播放顺序
介绍 本示例展示了lottie对动画的操作功能。引入Lottie模块,实现控制动画的播放、暂停、倍速播放、播放顺序、播放到指定帧停止或从指定帧开始播放、侦听事件等功能,动画资源路径必须是json格式。 效果预览 使用说明: 进入页面默认开始201…...
C++面试100问与自动驾驶100问
C的学习和面试其实是非常的不友好的,首先C的学习内容非常的多,其次C的面试不单单面试C的知识点,还有它的“七大姑八大姨”(计算机网络、数据结构、算法、计算机组成原理、操作系统、编译、xxx的底层实现 and so on)。 …...
加速 Redis 操作:掌握管道技术提升性能与效率
Redis 管道技术是一种用于优化 Redis 命令执行效率的机制。在传统的 Redis 操作中,每次向 Redis 服务器发送一个命令,都需要等待命令执行完成并返回结果,这样会导致频繁的网络通信和服务器端的命令执行开销,降低系统的性能和吞吐量…...
深入浅出 -- 系统架构之分布式系统底层的一致性
在分布式领域里,一致性成为了炙手可热的名词,缓存、数据库、消息中间件、文件系统、业务系统……,各类分布式场景中都有它的身影,因此,想要更好的理解分布式系统,必须要理解“一致性”这个概念。 其实关于…...
idea Springboot 电影推荐系统LayUI框架开发协同过滤算法web结构java编程计算机网页
一、源码特点 springboot 电影推荐系统是一套完善的完整信息系统,结合mvc框架和LayUI框架完成本系统springboot dao bean 采用协同过滤算法进行推荐 ,对理解JSP java编程开发语言有帮助系统采用springboot框架(MVC模式开发)&…...
xss【2】
1.xss钓鱼 钓鱼攻击利用页面,fish.php黑客钓鱼获取到账号密码存储的位置 xss进行键盘记录 2.xss常规防范 3.xss验证payload XSS(跨站攻击)_details/open/ontoggle-CSDN博客...
时序分解 | Matlab实现GSWOA-VMD改进鲸鱼优化算法优化变分模态分解时间序列信号分解
时序分解 | Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解 目录 时序分解 | Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现GSWOA-VMD改进鲸鱼优化算法优化变分模态分解时间序…...
css- 4
1.浮动 1. 浮动最初用于实现文字环绕效果 2. 现在,浮动是主流的布局方式之一 1.1元素浮动之后的特点 元素浮动之后,称为浮动元素,具有如下特点: 1. 浮动元素脱离文档流 2. 多个浮动的元素会水平排列,一行放不下自动换…...
22.括号生成
题目描述 数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。 示例 1: 输入:n 3 输出:[“((()))”,“(()())”,“(())()”,“()(())”,“()()()”] 示例 2: 输入…...
JAVA八股--redis
JAVA八股--redis 如何保证Redis和数据库数据一致性redisson实现的分布式锁的主从一致性Redis脑裂现象及解决方案介绍I/O多路复用模型undo log 和 redo log(没掌握MyISAM 和 InnoDB 有什么区别? 如何保证Redis和数据库数据一致性 关于异步通知中消息队列…...
[图像处理] MFC载入图片并绘制ROI矩形
上一篇: [图像处理] MFC载入图片并进行二值化处理和灰度处理及其效果显示 文章目录 前言完整代码重要代码效果 前言 上一篇实现了MFC通过Picture控件载入图片。 这一篇实现ROI功能的第一部分,在Picture控件中,通过鼠标拖拽画出一个矩形。 完…...
Godot 4 教程《勇者传说》依赖注入 学习笔记(0):环境配置
文章目录 前言相关地址环境配置初始化环境配置文件夹结构代码结构代码运行 资源文件导入像素风格窗口环境设置背景设置,Tileap使用自动TileMap 人物场景动画节点添加站立节点添加移动动画添加 通过依赖注入获取Godot的全局属性项目声明 当前项目逻辑讲解角色下降添加代码位置问…...
强行让Java和Go对比一波[持续更新]
概述 很多Java开发如果想转Golang的话,比较让Java开发蛋疼的第一是语法,第二是一些思想和设计哲学的Gap,所以我这儿强行整理一波Java和Golang的对比,但是由于GO和Java在很多方面都有不同的设计,所以这些对比的项可以更…...
理解七层网络协议
osi体系结构 上三路(管数据) 应用层 通过http等,把传输的格式,数据打包 处理网络应用。直接为端用户服务,提供各类应用过程的接口和用户接口。例如:HTTP、Tenlent、FTP、SMTP、NFS等。基于TCP的FTP、HTTP…...
网络协议——HTTP协议
目录 编辑 一,HTTP协议基本认识 二,认识URL 三,http协议的格式 1,发送格式 2,回应格式 四,服务端代码 五,http报文细节 1,Post与Get方法 2,Content_lenth 3&…...
八股面试——数据库——索引
索引的概念 B树的概念: 索引的作用 聚簇索引与非聚簇索引 聚簇索引就是主键值,在B树上,通过主键大小(数据在B树叶子节点按主键顺序排序)寻找对应的叶子节点,叶子节点保存的一整条记录。 非聚簇索引&#x…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
全面解析数据库:从基础概念到前沿应用
在数字化时代,数据已成为企业和社会发展的核心资产,而数据库作为存储、管理和处理数据的关键工具,在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理,到社交网络的用户数据存储,再到金融行业的交易记录处理&a…...
6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙
Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...
WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...
PH热榜 | 2025-06-08
1. Thiings 标语:一套超过1900个免费AI生成的3D图标集合 介绍:Thiings是一个不断扩展的免费AI生成3D图标库,目前已有超过1900个图标。你可以按照主题浏览,生成自己的图标,或者下载整个图标集。所有图标都可以在个人或…...
小智AI+MCP
什么是小智AI和MCP 如果还不清楚的先看往期文章 手搓小智AI聊天机器人 MCP 深度解析:AI 的USB接口 如何使用小智MCP 1.刷支持mcp的小智固件 2.下载官方MCP的示例代码 Github:https://github.com/78/mcp-calculator 安这个步骤执行 其中MCP_ENDPOI…...
