当前位置: 首页 > news >正文

MySQL 索引底层探索:为什么是B+树?

MySQL 索引底层探索:为什么是B+树?

  • 1. 由一个例子总结索引的特点
  • 2. 基于哈希表实现的哈希索引
  • 3. 高效的查找方式:二分查找
  • 4. 基于二分查找思想的二叉查找树
  • 5. 升级版的BST树:AVL 树
  • 6. 更加符合磁盘特征的B树
  • 7. 不断优化的B树:B+ 树
  • 8. 疑问和思考
    • 8.1 B+ 树和 B 树的区别?
  • 9. 参考文档

你可能已经知道 B+ 树被用于 MySQL 的Innodb引擎的索引底层实现,那么,为什么是 B+ 树呢?本文由浅及深,探索数据库索引底层实现。

关于常见分布式组件高可用设计原理的理解和思考


1. 由一个例子总结索引的特点

加索引是数据库加速查询的一种方式,那么为什么用索引可以加快查询呢?讲到索引,其实我们经常会听到一个图书馆的例子,图书馆里的书目繁杂,我们如何从若干本书里面找到一本我们想要的书呢?我们根据图书馆系统检索,可以找到某本书对应的图书编号。在基于书籍按照一定规则排列的前提下,我们可以根据图书编号找到这本书。

例如,假设图书编号根据:

  • 第几个书架 - 书架上第几个格子(第几层) - 从左到右数第几个位置
  • 这样的规则编排,我们就可以轻松的获取到我们想要的书籍。

你也许发现了,这个例子中,藏着两个信息:

  • 按照一定的规则排列
  • 有序

按照一定的规则,建立一定的映射关系,这让你联想到了什么?没错,就是哈希表。

2. 基于哈希表实现的哈希索引

探讨哈希索引相关特性。

在 MySQL 的 InnoDB 引擎中,自适应哈希索引就是用哈希表实现的。哈希索引是数据库自身创建并使用的,DBA 本身不能对其进行干预,但是可以通过参数来禁止或者启用此特性。

显然用哈希表实现索引的好处是非常明显的,查找单个指定数据只需要O(1)的时间复杂度。列入如下sql语句:

select id from tablename where id = 1;

但是对于这种查找指定范围的 sql 语句,哈希索引就无能为力了。

select id from tablename where id BETWEEN 20 AND 23;

原因是哈希这种数据结构,本身是无序的,因此针对数据排序难以获取好的效果

到这里我们遇到了一个问题,就是哈希表虽然从查找效率上满足了我们查找单个数据的要求,但是显然,当遇到范围查询时,由于哈希表本身的无序性,不利于指定范围查找。因此我们需要针对这种类型的查询获取更加友好的数据结构方式,以获取更好的查询性能。

也就是说,我们的需求增加了,我们希望数据的组织方式,既要有一定规则,又要有序。在引出这种数据结构之前,我们首先来看一种查找方式:二分查找

3. 高效的查找方式:二分查找

二分查找的核心思想是给定一个 有序 的数组,在查找过程中采用跳跃式的方式查找,即先以有序数列的中点位置为比较对象,如果要查找的元素小于中点元素,则将待查序列缩小为左半部分,否则为右半部分。通过每次比较,将查找区间减少一半,直到找到所需元素。

比如要从以下序列中查找到数字 4

[1,3,4,5,6,7,8]

需要经过下面的查找步骤:

  • 取中心位置对应元素,显然 5 大于 4,在左边区间 [1,3,4] 进行查找
  • 继续取中心位置对应元素 3,显然 3 大于 4,在右边区间 [4] 进行查找
  • 4 等于 4,所以我们查找成功。

可以看到二分查找的效率是 O(log n)。

由于有序数组自身的有序性,所以范围查询依然可以通过二分查找的方式查找区间的边界来实现。
这样看来,如果单从查询效率上来说,有序的数组是一种很好的选择。但是显然有序数组对于插入和删除并不友好,假设我们要插入元素或者删除元素,都需要把部分元素全部向后或者向前移动,最糟糕的时间复杂度是 。

有没有这样一种数据结构,既有一定顺序,又方便插入和删除呢?事实上,基于二分查找的思想,诞生了这样一种数据结构:二分查找树。

4. 基于二分查找思想的二叉查找树

二叉查找树(Binary Search Tree)即BST树是这样的一种数据结构,如下图:
在这里插入图片描述
在二叉搜索树中:

  • 若任意结点的左子树不空,则左子树上所有结点的值均不大于它的根结点的值。
  • 若任意结点的右子树不空,则右子树上所有结点的值均不小于它的根结点的值。
  • 任意结点的左、右子树也分别为二叉搜索树。

这样的结构非常适合用二分查找的思维查找元素。

比如我们需要查找键值为8的记录:

  • 先从根找起,找到 6;
  • 显然 8>6,所以接着找到 6 的右子树,找到 7;
  • 显然 8>7, 所以找 7 的右子树,找到了 8,查找结束。

这样一棵子树高度差不大于 1 的二叉查找树的查找效率接近与O(logn);

但是当二叉树的构造变成这样时, 此时我们再查找 8 时,查找效率就沦为接近顺序遍历查找的效率。
在这里插入图片描述
显然这不是我们想要的,二叉查找树也需要 balance,以控制二叉树的层高和规格配置

5. 升级版的BST树:AVL 树

我们对二叉查找树做个限制,限制必须满足任何节点的两个子树的最大差为 1,也是AVL 树的定义,这样我们的查找效率就有了一定的保障。AVL 树 是一种自平衡二叉查找树(self-balancing binary search tree)。

当然,维护AVL 树也是需要一定开销的,即当树插入/更新/删除新的数据时假设破坏了树的平衡性,那么需要通过左旋和右旋来维护树的平衡。当数据量很多时,同样也会出现二叉树过高的情况。

我们知道AVL 树的查找效率为 O(log n),也就是说,当树过高时,查找效率会下降。

另外由于我们的索引文件并不小,所以是存储在磁盘上的。文件系统需要从磁盘读取数据时,一般以页为单位进行读取,假设一个页内的数据过少,那么操作系统就需要读取更多的页,涉及磁盘随机 I/O 访问的次数就更多。

将数据从磁盘读入内存涉及随机 I/O 的访问,是数据库里面成本最高的操作之一。因而这种树高会随数据量增多急剧增加,每次更新数据又需要通过左旋和右旋维护平衡的二叉树,不太适合用于存储在磁盘上的索引文件。

因此我们应该尽可能的减少文件系统的随机访问,解决的思路应该是

  • 一个文件系统页应该尽可能的保存多的数据,以减少页的数量访问,提升效率
  • 减少树的层高

6. 更加符合磁盘特征的B树

前面我们看到,虽然AVL树既有链表的快速插入与删除操作的特点,又有数组快速查找的优势,但是这并不是最符合磁盘读写特征的数据结构。

也就是说,我们要找到这样一种数据结构,能够有效的控制树高,那么我们把二叉树变成m叉树,也就是下图的这种数据结构:B 树。

B树是一种这样的数据结构:
在这里插入图片描述
根结点至少有两个子结点;

  • 每个中间节点都包含 k-1 个元素和k个子结点,其中 m/2 <= k <= m;
  • 每一个叶子结点都包含 k-1 个元素,其中 m/2 <= k <= m;
  • 所有的叶子结点都位于同一层;
  • 每个结点中关键字从小到大排列,并且当该结点的孩子是非叶子结点时,该 k-1 个元素正好是 k 个子结点包含的元素的值域的分划。

可以看到,B树在保留二叉树预划分范围从而提升查询效率的思想的前提下,做了以下优化:

  • 二叉树变成 m 叉树,这个 m 的大小可以根据单个页的大小做对应调整,从而使得一个页可以存储更多的数据,从磁盘中读取一个页可以读到的数据就更多,随机 IO 次数变少,大大提升效率。
  • 但是我们看到,我们只能通过中序遍历查询全表,当进行范围查询时,可能会需要中序回溯。如果出现查询回溯,就会导致查询的路径层高变高,随机IO次数进一步提升。

因此需要针对B树进一步调整

7. 不断优化的B树:B+ 树

基于以上的缺陷,又诞生了一种新的优化B树的树: B+ 树
在这里插入图片描述
B+树在B树的基础上加了以下优化:

  • 叶子结点增加了指针进行连接,即叶子结点间形成了链表;
  • 非叶子结点只存关键字 key,不再存储数据,只在叶子结点存储数据;

说明:叶子之间用双向链表连接比单向链表连接多出的好处是通过链表中任一结点都可以通过往前或者往后遍历找到链表中指定的其他结点。

这样做的好处是:

  • 范围查询时可以通过访问叶子节点的链表进行有序遍历,而不再需要中序回溯访问结点。
  • 非叶子结点只存储关键字key,一方面这种结构相当于划分出了更多的范围,加快了查询速度,另一方面相当于单个索引值大小变小,同一个页可以存储更多的关键字,读取单个页就可以得到更多的关键字,可检索的范围变大了,相对 IO 读写次数就降低了。

8. 疑问和思考

一些总结

8.1 B+ 树和 B 树的区别?

B 树非叶子结点和叶子结点都存储数据,因此查询数据时,时间复杂度最好为 O(1),最坏为 O(log n)。
B+ 树只在叶子结点存储数据,非叶子结点存储关键字,且不同非叶子结点的关键字可能重复,因此查询数据时,时间复杂度固定为 O(log n)。

B+ 树叶子结点之间用链表相互连接,因而只需扫描叶子结点的链表就可以完成一次遍历操作,B树只能通过中序遍历。

为什么 B+ 树比 B 树更适合应用于数据库索引?
B+ 树更加适应磁盘的特性,相比 B 树减少了 I/O 读写的次数。由于索引文件很大因此索引文件存储在磁盘上,B+ 树的非叶子结点只存关键字不存数据,因而单个页可以存储更多的关键字,即一次性读入内存的需要查找的关键字也就越多,磁盘的随机 I/O 读取次数相对就减少了。

B+ 树的查询效率相比B树更加稳定,由于数据只存在在叶子结点上,所以查找效率固定为 O(log n)。
B+ 树叶子结点之间用链表有序连接,所以扫描全部数据只需扫描一遍叶子结点,利于扫库和范围查询;B 树由于非叶子结点也存数据,所以只能通过中序遍历按序来扫。

也就是说,对于范围查询和有序遍历而言,B+ 树的效率更高。

9. 参考文档

  • 暂无

相关文章:

MySQL 索引底层探索:为什么是B+树?

MySQL 索引底层探索&#xff1a;为什么是B树&#xff1f; 1. 由一个例子总结索引的特点2. 基于哈希表实现的哈希索引3. 高效的查找方式&#xff1a;二分查找4. 基于二分查找思想的二叉查找树5. 升级版的BST树&#xff1a;AVL 树6. 更加符合磁盘特征的B树7. 不断优化的B树&#…...

XML HTTP传输 小结

what’s XML XML 指可扩展标记语言&#xff08;eXtensible Markup Language&#xff09;。 XML 被设计用来传输和存储数据&#xff0c;不用于表现和展示数据&#xff0c;HTML 则用来表现数据。 XML 是独立于软件和硬件的信息传输工具。 应该掌握的基础知识 HTMLJavaScript…...

相机标定——四个坐标系介绍

世界坐标系(Xw,Yw,Zw) 世界坐标系是一个用于描述和定位三维空间中物体位置的坐标系&#xff0c;通常反映真实世界下物体的位置和方向。它是一个惯性坐标系&#xff0c;被用作整个场景或系统的参考框架。在很多情况下&#xff0c;世界坐标系被认为是固定不变的&#xff0c;即它…...

C++:MySQL数据库的增删改(三)

1、相关API 执行所有的sql语句都是mysql_query或者mysql_real_query mysql_query无法处理带有特殊字符的sql语句&#xff08;如&#xff1a;反斜杠0&#xff09;mysql_real_query则可以避免&#xff0c;一般使用这个。 mysql_affected_rows&#xff1a;获取sql语句执行结果影响…...

golang - 简单实现linux上的which命令

本文提供了在环境变量$PATH设置的目录里查找符合条件的文件的方法。 实现函数 import ("fmt""os""path""strings" )// 实现 unix whtich 命令功能 func Which(cmd string) (filepath string, err error) {// 获得当前PATH环境变量en…...

推荐一个好用的数据库映射架构

SqlSugar ORM 优点: SqlSugar 是 .NET 开源 ORM 框架,由 Fructose 大数据技术团队维护和更新,是开箱即用最易用的 ORM 优点: 【低代码】【高性能】【超简单】【功能综合】【多数据库兼容】【适用产品】 支持 .NET .NET framework.net core3.1.ne5.net6.net7.net8 .net…...

(013)window的Idea运行程序 Amazon java.nio.file.AccessDeniedException

解决方法一 在资源管理器中删除该目录&#xff0c; 在程序中使用代码&#xff0c;重新建立该目录&#xff1a; if (!FileUtil.exist(destinationPath)){FileUtil.mkdir(destinationPath); }解决方法二 JDK 的版本有问题&#xff0c;换个JDK。 解决方法三 网络不好&#xf…...

LeetCode 1684. 统计一致字符串的数目

解题思路 首先用set把allowed中的字符保存&#xff0c;然后一一判断。 相关代码 class Solution {public int countConsistentStrings(String allowed, String[] words) {Set<Character> set new HashSet<>();int reswords.length;for(int i0;i<allowed.len…...

uniapp-设置UrlSchemes从外部浏览器H5打开app

需求&#xff1a;外部浏览器H5页面&#xff0c;跳转到uniapp开发的原生app内部。 1、uniapp内部的配置&#xff1a; &#xff08;1&#xff09;打开manifest->App常用其他设置&#xff0c;如下&#xff0c;按照提示输入您要设置的urlSchemes&#xff1a; &#xff08;2&am…...

校园圈子小程序,大学校园圈子,三段交付,源码交付,支持二开

介绍 在当今的数字化时代&#xff0c;校园社交媒体和在线论坛成为了学生交流思想、讨论问题以及分享信息的常用平台。特别是微信小程序&#xff0c;因其便捷性、用户基数庞大等特点&#xff0c;已逐渐成为构建校园社区不可或缺的一部分。以下是基于现有资料的校园小程序帖子发…...

基于kmeans的聚类微博舆情分析系统

第一章绪论 1.1研究背景 如今在我们的生活与生产的每个角落都可以见到数据与信息的身影。自从上十世纪八十年代的中后期开始&#xff0c;我们使用的互联网技术已经开始快速发展&#xff0c;近些年来云计算、大数据和物联网等与互联网有相领域的发展让互联网技术达到了史无前例…...

【Docker常用命令(四)】

目录 Docker常用命令&#xff08;四&#xff09;注意 Docker常用命令&#xff08;四&#xff09; docker pause docker pause 命令用于暂停容器中的所有进程。docker pause CONTAINER [CONTAINER...]常用子命令和选项&#xff1a;无特定常用选项。docker port docker port 命令…...

黑豹程序员-Spring Task实现定时任务

定时任务 项目中&#xff0c;我们有一个特殊的要求&#xff0c;无需人为去触发&#xff0c;而是自动去触发程序。通常有一定的频率&#xff0c;每天&#xff0c;某时等。 实现的四种方式 1、java自身提供定时任务java.util.Timer类&#xff0c;但太过简单&#xff0c;几乎无…...

云原生安全当前的挑战与解决办法

云原生安全作为一种新兴的安全理念&#xff0c;不仅解决云计算普及带来的安全问题&#xff0c;更强调以原生的思维构建云上安全建设、部署与应用&#xff0c;推动安全与云计算深度融合。所以现在云原生安全在云安全领域越来受到重视&#xff0c;云安全厂商在这块的投入也是越来…...

Qt——Qt实现数据可视化之QChart的使用总结(使用QChart画出动态显示的实时曲线)

【系列专栏】:博主结合工作实践输出的,解决实际问题的专栏,朋友们看过来! 《项目案例分享》 《极客DIY开源分享》 《嵌入式通用开发实战》 《C++语言开发基础总结》 《从0到1学习嵌入式Linux开发》...

(React生命周期)前端八股文修炼Day8

一 React的生命周期有哪些 React组件的生命周期可以分为三个主要阶段&#xff1a;挂载&#xff08;Mounting&#xff09;、更新&#xff08;Updating&#xff09;和卸载&#xff08;Unmounting&#xff09;。React类组件的生命周期方法允许你在组件的不同阶段执行代码。 挂载…...

考研||考公||就业||其他?-------愿不再犹豫

大三下了&#xff0c;现在已经开学一个多月了&#xff0c;在上个学期的时候陆陆续续吧周围有的行动早的人已经开始准备考研了&#xff0c;当然这只是下小部分人吧&#xff0c;也有一部分人是寒假可能就开始了&#xff0c;更多的则是开学的时候&#xff0c;我的直观感受是图书馆…...

使用 Selenium 和 OpenCV 识别验证码(使用 Java)

验证码的自动识别对于爬虫来说是一个常见的挑战。在这篇文章中&#xff0c;我们将展示如何使用 Selenium 和 OpenCV&#xff0c;结合 Java&#xff0c;来自动化识别网站上的验证码。 配置 Maven 依赖 首先&#xff0c;我们需要在 Maven 项目中添加 Selenium 和 OpenCV 的依赖。…...

什么是数据库?如何安装SQL Server(超详细版)

文章目录 什么是数据库数据库与数据库管理系统数据库系统之间的区别和联系数据库在生活中的应用 安装SQL Server数据库系统要求 安装步骤(超详细)安装前的准备 安装SSMS 什么是数据库 数据库&#xff0c;顾名思义&#xff0c;是存储数据的“仓库”。它不仅仅是简单的数据存储&…...

Golang 开发实战day08 - Multiple Return values

Golang 教程08 - Multiple Return values 1. Multiple return values 1.1 如何理解多个返回值&#xff1f; Go语言中的多返回值&#xff0c;就像你听了一首歌曲yellow&#xff0c;可以从歌曲里反馈出忧郁和害羞&#xff01;Goland的多个返回值就类似于如此&#xff0c;设定一…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...