当前位置: 首页 > news >正文

隐私计算 FATE - 多分类神经网络算法测试

一、说明
本文分享基于 Fate 使用 横向联邦 神经网络算法 对 多分类 的数据进行 模型训练,并使用该模型对数据进行 多分类预测。

二分类算法:是指待预测的 label 标签的取值只有两种;直白来讲就是每个实例的可能类别只有两种 (0 或者 1),例如性别只有 男 或者 女;此时的分类算法其实是在构建一个分类线将数据划分为两个类别。
多分类算法:是指待预测的 label 标签的取值可能有多种情况,例如个人爱好可能有 篮球、足球、电影 等等多种类型。常见算法:Softmax、SVM、KNN、决策树。
关于 Fate 的核心概念、单机部署、训练以及预测请参考以下相关文章:

《隐私计算 FATE - 关键概念与单机部署指南》
《隐私计算 FATE - 模型训练》
《隐私计算 FATE - 离线预测》
二、准备训练数据
上传到 Fate 里的数据有两个字段名必需是规定的,分别是主键为 id 字段和分类字段为 y 字段,y 字段就是所谓的待预测的 label 标签;其他的特征字段 (属性) 可任意填写,例如下面例子中的 x0 - x9


本文只描述关键部分,关于详细的模型训练步骤,请查看文章《隐私计算 FATE - 模型训练》

2.1. guest 端
10 条数据,包含 1 个分类字段 y 和 10 个标签字段 x0 - x9

上传到 Fate 中,表名为 muti_breast_homo_guest 命名空间为 experiment

2.2. host 端
10 条数据,字段与 guest 端一样,但是内容不一样


上传到 Fate 中,表名为 muti_breast_homo_host 命名空间为 experiment

三、执行训练任务
3.1. 准备 dsl 文件
创建文件 homo_nn_dsl.json 内容如下 :

{"components": {"reader_0": {"module": "Reader","output": {"data": ["data"]}},"data_transform_0": {"module": "DataTransform","input": {"data": {"data": ["reader_0.data"]}},"output": {"data": ["data"],"model": ["model"]}},"homo_nn_0": {"module": "HomoNN","input": {"data": {"train_data": ["data_transform_0.data"]}},"output": {"data": ["data"],"model": ["model"]}}}
}
3.2. 准备 conf 文件
创建文件 homo_nn_multi_label_conf.json 内容如下 :{"dsl_version": 2,"initiator": {"role": "guest","party_id": 9999},"role": {"arbiter": [10000],"host": [10000],"guest": [9999]},"component_parameters": {"common": {"data_transform_0": {"with_label": true},"homo_nn_0": {"encode_label": true,"max_iter": 15,"batch_size": -1,"early_stop": {"early_stop": "diff","eps": 0.0001},"optimizer": {"learning_rate": 0.05,"decay": 0.0,"beta_1": 0.9,"beta_2": 0.999,"epsilon": 1e-07,"amsgrad": false,"optimizer": "Adam"},"loss": "categorical_crossentropy","metrics": ["accuracy"],"nn_define": {"class_name": "Sequential","config": {"name": "sequential","layers": [{"class_name": "Dense","config": {"name": "dense","trainable": true,"batch_input_shape": [null,18],"dtype": "float32","units": 5,"activation": "relu","use_bias": true,"kernel_initializer": {"class_name": "GlorotUniform","config": {"seed": null,"dtype": "float32"}},"bias_initializer": {"class_name": "Zeros","config": {"dtype": "float32"}},"kernel_regularizer": null,"bias_regularizer": null,"activity_regularizer": null,"kernel_constraint": null,"bias_constraint": null}},{"class_name": "Dense","config": {"name": "dense_1","trainable": true,"dtype": "float32","units": 4,"activation": "sigmoid","use_bias": true,"kernel_initializer": {"class_name": "GlorotUniform","config": {"seed": null,"dtype": "float32"}},"bias_initializer": {"class_name": "Zeros","config": {"dtype": "float32"}},"kernel_regularizer": null,"bias_regularizer": null,"activity_regularizer": null,"kernel_constraint": null,"bias_constraint": null}}]},"keras_version": "2.2.4-tf","backend": "tensorflow"},"config_type": "keras"}},"role": {"host": {"0": {"reader_0": {"table": {"name": "muti_breast_homo_host","namespace": "experiment"}}}},"guest": {"0": {"reader_0": {"table": {"name": "muti_breast_homo_guest","namespace": "experiment"}}}}}}
}

3.3. 提交任务
执行以下命令:

flow job submit -d homo_nn_dsl.json -c homo_nn_multi_label_conf.json
执行成功后,查看 dashboard 显示:


四、准备预测数据
与前面训练的数据字段一样,但是内容不一样,y 值全为 0

4.1. guest 端

上传到 Fate 中,表名为 predict_muti_breast_homo_guest 命名空间为 experiment

4.2. host 端

上传到 Fate 中,表名为 predict_muti_breast_homo_host 命名空间为 experiment

五、准备预测配置
本文只描述关键部分,关于详细的预测步骤,请查看文章《隐私计算 FATE - 离线预测》

创建文件 homo_nn_multi_label_predict.json 内容如下 :

{"dsl_version": 2,"initiator": {"role": "guest","party_id": 9999},"role": {"arbiter": [10000],"host": [10000],"guest": [9999]},"job_parameters": {"common": {"model_id": "arbiter-10000#guest-9999#host-10000#model","model_version": "202207061504081543620","job_type": "predict"}},"component_parameters": {"role": {"guest": {"0": {"reader_0": {"table": {"name": "predict_muti_breast_homo_guest","namespace": "experiment"}}}},"host": {"0": {"reader_0": {"table": {"name": "predict_muti_breast_homo_host","namespace": "experiment"}}}}}}
}

六、执行预测任务
执行以下命令:

flow job submit -c homo_nn_multi_label_predict.json
执行成功后,查看 homo_nn_0 组件的数据输出:


可以看到算法输出的预测结果。

相关文章:

隐私计算 FATE - 多分类神经网络算法测试

​ 一、说明 本文分享基于 Fate 使用 横向联邦 神经网络算法 对 多分类 的数据进行 模型训练,并使用该模型对数据进行 多分类预测。 二分类算法:是指待预测的 label 标签的取值只有两种;直白来讲就是每个实例的可能类别只有两种 (0 或者 1)…...

Codeforces Round 853 (Div. 2)

Codeforces Round 853 (Div. 2) C. Serval and Toxels Arrays 思路: 求任意两个组合的元素个数。 注意到,其实每个元素都是独立的。他在任意组合的出现情况组成的贡献是可以分开讨论的。我们讨论元素x。假设x在m1个数组中出现了cnt次(一个…...

Ka频段需要更多带宽?

随着全球连接需求的增长,许多卫星通信(satcom)系统日益采用Ka频段,对数据速率的要求也水涨船高。目前,高性能信号链已经能支持数千兆瞬时带宽,一个系统中可能有成百上千个收发器,超高吞吐量数据速率已经成为现实。 另…...

初学pyinstaller打包过程中的一些问题

记录一下使用pyinstaller打包过程中的一些问题: 不安装虚拟环境打包,直接打包,一般不会出现什么问题,但是打包的exe很大,把所有模块和依赖库也一起打包了。 建议使用虚拟环境打包,安装必要的包&#xff0…...

第七章:Java常用类

第七章:Java常用类 7.1:字符串相关的类 String的特性 String表示是字符串,使用一对""引起来表示。 String声明为final的,不可被继承。 String实现了Serializable、Comparable接口,表示字符是支持序列化和…...

Apk加固后多渠道打包

之前一直使用360加固宝进行apk的加固打包,可以一键加固并打多渠道打包。但是,现在360加固宝收费了,在进行加固,多渠道打包,就得一步一步自己操作了,会很繁琐。所以,本文使用 360加固美团Wallet …...

K8S + ISTIO 金丝雀部署的例子

金丝雀发布(Canary):也是一种发布策略,和国内常说的灰度发布是同一类策略。蓝绿部署是准备两套系统,在两套系统之间进行切换,金丝雀策略是只有一套系统,逐渐替换这套系统。 Istio 提供一种简单的…...

python自带数据的模型合集

鸢尾花----聚类 Python鸢尾花数据集通常用于分类问题, 这些模型都可以通过Python中的Scikit-learn库进行实现。同时,也可以对这些模型进行参数调优以提高模型的准确性。 Logistic Regression(逻辑回归): 逻辑回归是一…...

女生学习大数据怎么样~有前景么

当前大数据发展前景非常不错,且大数据领域对于人才类型的需求比较多元化,女生学习大数据也会有比较多的工作机会。大数据是一个交叉学科涉及到的知识量比较大学习有一定的难度,女生则有女生的优势,只要认真学习了都是可以做大数据…...

统计代码量

一 windows 在 Windows 系统上,您可以使用 PowerShell 命令行工具来统计项目的代码量。下面是使用 PowerShell 统计项目代码量的步骤: 打开 PowerShell 终端:按下 Win X 键,选择「Windows PowerShell(管理员&#xf…...

uniapp在线升级关联云空间

升级中心 uni-upgrade-center - App: https://ext.dcloud.net.cn/plugin?id4542 App升级中心 uni-upgrade-center文档: https://uniapp.dcloud.net.cn/uniCloud/upgrade-center.html#uni-upgrade-center-app 升级中心 uni-upgrade-center - Admin&#…...

学习streamlit-2

首先视频快速预览下今天的学习内容: Streamlit Shorts: How to make a button今天继续学习streamlit,首先激活之前建立的虚拟环境: ❯ conda activate streamlit-env (streamlit-env) ~ via 🐍 v3.9.16 via &#x1f…...

Vscode中Vue文件保存格式化、 ElementUI、Font Awesome俩大插件使用

Vscode中Vue文件老一片红色出现格式错误??如何运行别人的项目(没有node_modules文件)??选用组件与图标?? 解决问题一 前提有:Prettier ESLint插件、ESLint插件 1.打开s…...

汽车标定知识整理(三):CCP报文可选命令介绍

目录 一、可选命令 CRO命令报文的可选命令表: 二、可选命令帧格式介绍 1、GET_SEED——获取被请求资源的种子(0x12) 2、UNLOCK——解锁保护(0x13) 3、SET_S_STATUS——设置Session状态(0x0C&#xff0…...

kubeadm安装K8S(集群)

前言市面上很多k8s的安装工具,作为产品的设计者和推广者,K8S组织也知道自己的产品部署起来十分的困难,于是把开源爱好者写的工具kubeadmn收编为正规军,纳入到了自己的麾下。为什么我们要用kubeadmn来部署?因为kubeadm不…...

Baumer工业相机堡盟相机如何使用PnPEventHandler实现相机掉线自动重连(C++新)

项目场景: Baumer工业相机堡盟相机传统开发包BGAPI SDK进行工业视觉软件整合时,常常需要将SDK中一些功能整合到图像处理软件中,方便项目的推进使用; 在项目的图像处理任务中,可能会因为一些硬件比如线缆网卡的原因导…...

Windows 命令行基础

1. 引言:为什么要使用命令行在 DOS 时代,人们只能依靠输入命令同计算机互交。而现在,微软的 Windows 操作系统已得到了广泛使用,我们处理日常事务也大多使用基于图形用户界面(GUI,Graphics User Interface&…...

面试官: 谈下音视频同步原理,音频和视频能绝对同步吗?

作者:波哥 心理分析:音视频同步本身比较难,一般使用ijkplayer 第三方做音视频同步。不排除有视频直播 视频通话需要用音视频同步,可以从三种 音频为准 视频为准 自定义时钟为准三种方式实现音视频同步 求职者:如果被问到 放正心态…...

CFS三层靶机安装与配置

CFS三层靶机安装与配置 环境下载 百度网盘 提取码:Chen 环境安装 下载完成后,有三个文件夹,每个文件夹对应一个靶机 进入三个文件夹,双击打开后缀为.ovf的文件,按提示安装虚拟机 环境配置 网段划分 target1&#…...

爬虫入门教程-Spider

Spider 爬虫是定义如何抓取某个网站(或一组网站)的类,包括如何执行抓取(即关注链接)以及如何从其网页中提取结构化数据(即抓取项目)。换句话说,Spider是您定义用于为特定网站&#x…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

LLM基础1_语言模型如何处理文本

基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者&#xff1a;吴岐诗&#xff0c;杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言&#xff1a;融合数据湖与数仓的创新之路 在数字金融时代&#xff0c;数据已成为金融机构的核心竞争力。杭银消费金…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...