当前位置: 首页 > news >正文

【神经网络】生成对抗网络GAN

生成对抗网络GAN

欢迎访问Blog总目录!

文章目录

  • 生成对抗网络GAN
  • 1.学习链接
  • 2.GAN结构
    • 2.1.生成模型Generator
    • 2.2.判别模型Discrimintor
    • 2.3.伪代码
  • 3.优缺点
    • 3.1.优势
    • 3.2.缺点
  • 4.pytorch GAN
    • 4.1.API
    • 4.2.GAN的搭建
      • 4.2.1.结果
      • 4.2.2.代码
    • 4.3.示意图:star:

1.学习链接

Generative Adversarial Networks

生成对抗网络(GAN) - 知乎 (zhihu.com)

深度学习----GAN(生成对抗神经网络)原理解析_gan神经网络-CSDN博客

图解 生成对抗网络GAN 原理 超详解_生成对抗网络gan图解-CSDN博客

2.GAN结构

GAN包含两个模型:

  • 生成模型(Generator):接收随机噪声,生成看起来真实的、与原始数据相似的实例。
  • 判别模型(Discrimintor):判断Generator生成的实例是真实的还是人为伪造的。(真实实例来源于数据集,伪造实例来源于生成模型)

最终得到效果极好的生成模型,其生成的实例真假难辨。

GAN的灵感来源于 “零和博弈” (完全竞争博弈),GAN就是通过生成网络G(Generator)和判别网络D(Discriminator)不断博弈,进而使G学习到数据的分布,即达到纳什均衡

【纳什均衡】博弈中这样的局面,对于每个参与者来说,只要其他人不改变策略,他就无法改善自己的状况。对于GAN,即生成模型 G 恢复了训练数据的分布(造出了和真实数据一模一样的样本),判别模型D判别不出来结果(乱猜),准确率为 50%(收敛)。这样双方网络利益均最大化,不再改变自己的策略(不再更新自己的权重)。
在这里插入图片描述

2.1.生成模型Generator

  • 输入: 数据集的某些向量信息,此处使用满足常见分布(高斯分布、均值分布等)的随机向量。
  • 输出: 符合像素大小的图片
  • 结构: 全连接神经网络或者反卷积网络。

在这里插入图片描述

2.2.判别模型Discrimintor

  • 输入: 伪造图片和数据集图片
  • 输出: 图片的真伪标签
  • 结构: 判别器模型(全连接网络、卷积网络等)
    在这里插入图片描述

2.3.伪代码

在这里插入图片描述

3.优缺点

3.1.优势

  • GAN采用的是一种无监督的学习方式训练,可以被广泛用在无监督学习和半监督学习领域
  • 模型只用到了反向传播,而不需要马尔科夫链

3.2.缺点

  • 难以学习离散数据,如文本

4.pytorch GAN

4.1.API

生成对抗网络 - PyTorch官方教程中文版 (panchuang.net)

4.2.GAN的搭建

绘制在upper_bound和lower_bound之间的一元二次方程画

4.2.1.结果

4.2.2.代码

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plttorch.manual_seed(1)    # reproducible
np.random.seed(1)# Hyper Parameters
BATCH_SIZE = 64
LR_G = 0.0001           # learning rate for generator
LR_D = 0.0001           # learning rate for discriminator
N_IDEAS = 5             # 噪声点个数
ART_COMPONENTS = 15     # 15个Y轴数据点
PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)])# show our beautiful painting range
# plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
# plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')
# plt.legend(loc='upper right')
# plt.show()def artist_works():     # painting from the famous artist (real target)a = np.random.uniform(1, 2, size=BATCH_SIZE)[:, np.newaxis]paintings = a * np.power(PAINT_POINTS, 2) + (a-1)paintings = torch.from_numpy(paintings).float()return paintingsG = nn.Sequential(                      # Generatornn.Linear(N_IDEAS, 128),            # random ideas (could from normal distribution)nn.ReLU(),nn.Linear(128, ART_COMPONENTS),     # making a painting from these random ideas
)D = nn.Sequential(                      # Discriminatornn.Linear(ART_COMPONENTS, 128),     # receive art work either from the famous artist or a newbie like Gnn.ReLU(),nn.Linear(128, 1),nn.Sigmoid(),                       # tell the probability that the art work is made by artist
)opt_D = torch.optim.Adam(D.parameters(), lr=LR_D)
opt_G = torch.optim.Adam(G.parameters(), lr=LR_G)plt.ion()   # something about continuous plottingfor step in range(10000):artist_paintings = artist_works()  # real painting from artistG_noise = torch.randn(BATCH_SIZE, N_IDEAS, requires_grad=True)  # random ideas\nG_paintings = G(G_noise)                    # fake painting from G (random ideas)prob_artist0 = D(artist_paintings)  # 判断真画prob_artist1 = D(G_paintings)  # 判断假画# D增加真画概率,减少伪画概率; 梯度下降法为减小误差,所以添加-号# D_loss越小,prob_artist0越大,prob_artist1越小D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1. - prob_artist1))opt_D.zero_grad()D_loss.backward(retain_graph=True)  # reusing computational graphopt_D.step()# 重新采样G_noise = torch.randn(BATCH_SIZE, N_IDEAS, requires_grad=True)  # random ideas\nG_paintings = G(G_noise)  # fake painting from G (random ideas)prob_artist1 = D(G_paintings)  # 判断假画# G_loss越小,prob_artist1越大G_loss = torch.mean(torch.log(1. - prob_artist1))opt_G.zero_grad()G_loss.backward()opt_G.step()if step % 50 == 0:  # plottingplt.cla()plt.plot(PAINT_POINTS[0], G_paintings.data.numpy()[0], c='#4AD631', lw=3, label='Generated painting', )plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')# D 的判断准确度=50%最优plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % prob_artist0.data.numpy().mean(),fontdict={'size': 13})plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % -D_loss.data.numpy(), fontdict={'size': 13})plt.ylim((0, 3));plt.legend(loc='upper right', fontsize=10);plt.draw();plt.pause(0.01)plt.ioff()
plt.show()

4.3.示意图⭐️

在这里插入图片描述

相关文章:

【神经网络】生成对抗网络GAN

生成对抗网络GAN 欢迎访问Blog总目录! 文章目录 生成对抗网络GAN1.学习链接2.GAN结构2.1.生成模型Generator2.2.判别模型Discrimintor2.3.伪代码 3.优缺点3.1.优势3.2.缺点 4.pytorch GAN4.1.API4.2.GAN的搭建4.2.1.结果4.2.2.代码 4.3.示意图:star: 1.学习链接 …...

智慧能耗预付费系统解决方案——用户侧能源计量及收费

安科瑞电气股份有限公司 祁洁 15000363176 一、方案组织架构 二、方案特点 (1)多样组网,多样设备接入,多样部署; (2)集团管理、项目分级、分层拓扑; (3&#xff09…...

探秘大模型:《提示工程:技巧、方法与行业应用》背后的故事

提示工程是一种新兴的利用人工智能的技术,它通过设计提示引导生成式 AI 模型产生预期的输出,来提升人与 AI 的互动质量,激发 AI 模型的潜力,提升AI的应用水平。 为了让每一个人都拥有驱动大模型的能力,以微软全球副总裁…...

2024年光学通信和物联网、自动化控制和大数据国际会议(OCITACB2024)

2024年光学通信和物联网、自动化控制和大数据国际会议(OCITACB2024) 会议简介 2024年国际光通信与物联网、自动控制和大数据会议(OCITACB2024)的主要目标是促进光通信与物联网、自动管理和大数据领域的研发活动。另一个目标是促进研究人员、开发人员、工…...

q @ k运算及att = (q @ k.transpose(-2, -1))含义

以下代码经常在Transformer的算法中见到:q, k, v qkv[0], qkv[1], qkv[2] # query, key, value tensor q q * self.scale attn (q k.transpose(-2, -1))其中涉及到a b操作和transpose操作 a torch.Tensor([[1,2],[3,4]]) print(a)b torch.Tensor([[0.5,2],[…...

leetcode628-Maximum Product of Three Numbers

题目 给你一个整型数组 nums ,在数组中找出由三个数组成的最大乘积,并输出这个乘积。 示例 1: 输入:nums [1,2,3] 输出:6 分析 这道题目要求数组中三个数组成的最大乘积,由于元素有正数有负数&#xff…...

本地项目提交 Github

工具 GitIdeaGithub 账号 步骤 使用注册好的 Github 账号,登陆 Github; 创建 Repositories (存储库),注意填写图上的红框标注; 创建完成之后,找到存储库的 ssh 地址或 https 地址,这取决于你自己的配置…...

Idea中 maven 下载jar出现证书问题

目录 1: 具体错误: 2: 忽略证书代码: 3: 关闭所有idea, 清除缓存, 在下面添加如上忽略证书代码 4:执行 maven clean 然后刷刷新依赖 完成,撒花!&#x…...

ArcGIS Server 10发布要素服务时遇到的数据库注册问题总结(一)

工作环境: Windows 7 64 位旗舰版 ArcGIS Server 10.1 ArcGIS Desktop 10.1 IIS 7.0 开始的时候以为10.1发布要素服务和10.0一样,需要安装ArcSDE,后来查阅资料发现不需要,数据库直连方式就可以了。 首先我来说一下发布要素服…...

自我介绍的HTML 页面(入门)

一.前情提要 1.主要是代码示例&#xff0c;具体内容需自己填充 2.代码后是详解 二.代码实例和解析 代码 <!DOCTYPE html> <html lang"zh-CN"> <head> <meta charset"UTF-8"> <title>自我介绍页面</title>…...

负载均衡原理及算法

负载均衡&#xff08;Load Balancing&#xff09;是在计算机网络中&#xff0c;将工作负载&#xff08;即请求&#xff09;分配给多个资源&#xff0c;以实现最优资源利用、最大化性能、最小化延迟和提高可用性等目标的技术。负载均衡通常用于分布式系统、网络服务和服务器集群…...

【iOS ARKit】USDZ文件

USDZ 概述 ARKit 支持 USDZ&#xff08;Universal Scene Description Zip&#xff0c;通用场景描述文件包&#xff09;、Reality 两种格式的模型文件&#xff0c;得益于 USDZ的强大描述能力与网络传输便利性&#xff0c;使得iOS 设备能够在其信息&#xff08;Message&#xff0…...

鹅厂实习offer

#转眼已经银四了&#xff0c;你收到offer了吗# 本来都打算四月再投实习了&#xff0c;突然三月初被wxg捞了&#xff08;一年前找日常实习投的简历就更新了下&#xff09;&#xff0c;直接冲了&#xff0c;流程持续二十多天&#xff0c;结果是运气还不错&#xff0c;应该是部门比…...

极狐GitLab 如何在 helm 中恢复数据

本文作者&#xff1a;徐晓伟 GitLab 是一个全球知名的一体化 DevOps 平台&#xff0c;很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版&#xff0c;专门为中国程序员服务。可以一键式部署极狐GitLab。 本文主要讲述了如何在极狐GitLab …...

Hololens2远程音视频通话与AR远程空间标注,基于OpenXR+MRTK3+WebRTC实现

Hololens2远程音视频通话与AR远程空间标注 使用Unity2021.3.21版本开发&#xff0c;基于OpenXRMRTK3.0WebRTC实现。 &#xff08;1&#xff09;通过视频获取视频帧的矩阵的方法可以参考&#xff1a;https://learn.microsoft.com/zh-cn/windows/mixed-reality/develop/advanced…...

2024年03月CCF-GESP编程能力等级认证Scratch图形化编程二级真题解析

本文收录于专栏《Scratch等级认证CCF-GESP真题解析》,专栏总目录・点这里 一、单选题(一共 15 个题目,每题 2 分,共 30 分) 第1题 小杨的父母最近刚刚给他买了一块华为手表,他说手表上跑的是鸿蒙,这个鸿蒙是?( ) A、小程序 B、计时器 C、操作系统 D、神话人物 答案…...

开发语言漫谈-C#

C#的#&#xff0c;字面上的意思就是&#xff0c;也就是把C再。微软只所以搞C#就是要抗衡Java。微软当时搞了个J&#xff0c;被Java告了&#xff0c;没办法了只能另取炉灶。从纯技术角度来看&#xff0c;C#设计非常优秀&#xff0c;可以覆盖所有领域&#xff0c;是几乎唯一的全栈…...

微信小程序用户登录授权指定(旧版本)

配置旧版本基础库2.12.3 实现效果 点击登录按钮即可直接登录&#xff0c;获取用户昵称和头像 点击获取头像昵称按钮则需要授权&#xff0c;才能成功登录 代码实现 my.xml <!-- 登录页面,调试基础库为2.20.2库 --> <view class"mylogin"><block w…...

电商技术揭秘十五:数据挖掘与用户行为分析

相关系列文章 电商技术揭秘一&#xff1a;电商架构设计与核心技术 电商技术揭秘二&#xff1a;电商平台推荐系统的实现与优化 电商技术揭秘三&#xff1a;电商平台的支付与结算系统 电商技术揭秘四&#xff1a;电商平台的物流管理系统 电商技术揭秘五&#xff1a;电商平台…...

云原生:5分钟了解一下Kubernetes是什么

在当今的云计算时代&#xff0c;容器化技术变得越来越重要。它能够帮助开发者更高效地部署和管理应用程序。而Kubernetes&#xff0c;作为容器编排领域的领军者&#xff0c;正逐渐成为企业构建和管理云原生应用的核心工具。 近期将持续为大家分享Kubernetes相关知识&#xff…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

springboot 日志类切面,接口成功记录日志,失败不记录

springboot 日志类切面&#xff0c;接口成功记录日志&#xff0c;失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...

DiscuzX3.5发帖json api

参考文章&#xff1a;PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下&#xff0c;适配我自己的需求 有一个站点存在多个采集站&#xff0c;我想通过主站拿标题&#xff0c;采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...