【神经网络】生成对抗网络GAN
生成对抗网络GAN
欢迎访问Blog总目录!
文章目录
- 生成对抗网络GAN
- 1.学习链接
- 2.GAN结构
- 2.1.生成模型Generator
- 2.2.判别模型Discrimintor
- 2.3.伪代码
- 3.优缺点
- 3.1.优势
- 3.2.缺点
- 4.pytorch GAN
- 4.1.API
- 4.2.GAN的搭建
- 4.2.1.结果
- 4.2.2.代码
- 4.3.示意图:star:
1.学习链接
Generative Adversarial Networks
生成对抗网络(GAN) - 知乎 (zhihu.com)
深度学习----GAN(生成对抗神经网络)原理解析_gan神经网络-CSDN博客
图解 生成对抗网络GAN 原理 超详解_生成对抗网络gan图解-CSDN博客
2.GAN结构
GAN包含两个模型:
- 生成模型(Generator):接收随机噪声,生成看起来真实的、与原始数据相似的实例。
- 判别模型(Discrimintor):判断Generator生成的实例是真实的还是人为伪造的。(真实实例来源于数据集,伪造实例来源于生成模型)
最终得到效果极好的生成模型,其生成的实例真假难辨。
GAN的灵感来源于 “零和博弈” (完全竞争博弈),GAN就是通过生成网络G(Generator)和判别网络D(Discriminator)不断博弈,进而使G学习到数据的分布,即达到纳什均衡。
【纳什均衡】博弈中这样的局面,对于每个参与者来说,只要其他人不改变策略,他就无法改善自己的状况。对于GAN,即生成模型 G 恢复了训练数据的分布(造出了和真实数据一模一样的样本),判别模型D判别不出来结果(乱猜),准确率为 50%(收敛)。这样双方网络利益均最大化,不再改变自己的策略(不再更新自己的权重)。
2.1.生成模型Generator
- 输入: 数据集的某些向量信息,此处使用满足常见分布(高斯分布、均值分布等)的随机向量。
- 输出: 符合像素大小的图片。
- 结构: 全连接神经网络或者反卷积网络。
2.2.判别模型Discrimintor
- 输入: 伪造图片和数据集图片
- 输出: 图片的真伪标签
- 结构: 判别器模型(全连接网络、卷积网络等)
2.3.伪代码
3.优缺点
3.1.优势
- GAN采用的是一种无监督的学习方式训练,可以被广泛用在无监督学习和半监督学习领域
- 模型只用到了反向传播,而不需要马尔科夫链
3.2.缺点
- 难以学习离散数据,如文本
4.pytorch GAN
4.1.API
生成对抗网络 - PyTorch官方教程中文版 (panchuang.net)
4.2.GAN的搭建
绘制在upper_bound和lower_bound之间的一元二次方程画
4.2.1.结果

4.2.2.代码
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plttorch.manual_seed(1) # reproducible
np.random.seed(1)# Hyper Parameters
BATCH_SIZE = 64
LR_G = 0.0001 # learning rate for generator
LR_D = 0.0001 # learning rate for discriminator
N_IDEAS = 5 # 噪声点个数
ART_COMPONENTS = 15 # 15个Y轴数据点
PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)])# show our beautiful painting range
# plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
# plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')
# plt.legend(loc='upper right')
# plt.show()def artist_works(): # painting from the famous artist (real target)a = np.random.uniform(1, 2, size=BATCH_SIZE)[:, np.newaxis]paintings = a * np.power(PAINT_POINTS, 2) + (a-1)paintings = torch.from_numpy(paintings).float()return paintingsG = nn.Sequential( # Generatornn.Linear(N_IDEAS, 128), # random ideas (could from normal distribution)nn.ReLU(),nn.Linear(128, ART_COMPONENTS), # making a painting from these random ideas
)D = nn.Sequential( # Discriminatornn.Linear(ART_COMPONENTS, 128), # receive art work either from the famous artist or a newbie like Gnn.ReLU(),nn.Linear(128, 1),nn.Sigmoid(), # tell the probability that the art work is made by artist
)opt_D = torch.optim.Adam(D.parameters(), lr=LR_D)
opt_G = torch.optim.Adam(G.parameters(), lr=LR_G)plt.ion() # something about continuous plottingfor step in range(10000):artist_paintings = artist_works() # real painting from artistG_noise = torch.randn(BATCH_SIZE, N_IDEAS, requires_grad=True) # random ideas\nG_paintings = G(G_noise) # fake painting from G (random ideas)prob_artist0 = D(artist_paintings) # 判断真画prob_artist1 = D(G_paintings) # 判断假画# D增加真画概率,减少伪画概率; 梯度下降法为减小误差,所以添加-号# D_loss越小,prob_artist0越大,prob_artist1越小D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1. - prob_artist1))opt_D.zero_grad()D_loss.backward(retain_graph=True) # reusing computational graphopt_D.step()# 重新采样G_noise = torch.randn(BATCH_SIZE, N_IDEAS, requires_grad=True) # random ideas\nG_paintings = G(G_noise) # fake painting from G (random ideas)prob_artist1 = D(G_paintings) # 判断假画# G_loss越小,prob_artist1越大G_loss = torch.mean(torch.log(1. - prob_artist1))opt_G.zero_grad()G_loss.backward()opt_G.step()if step % 50 == 0: # plottingplt.cla()plt.plot(PAINT_POINTS[0], G_paintings.data.numpy()[0], c='#4AD631', lw=3, label='Generated painting', )plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')# D 的判断准确度=50%最优plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % prob_artist0.data.numpy().mean(),fontdict={'size': 13})plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % -D_loss.data.numpy(), fontdict={'size': 13})plt.ylim((0, 3));plt.legend(loc='upper right', fontsize=10);plt.draw();plt.pause(0.01)plt.ioff()
plt.show()
4.3.示意图⭐️
相关文章:

【神经网络】生成对抗网络GAN
生成对抗网络GAN 欢迎访问Blog总目录! 文章目录 生成对抗网络GAN1.学习链接2.GAN结构2.1.生成模型Generator2.2.判别模型Discrimintor2.3.伪代码 3.优缺点3.1.优势3.2.缺点 4.pytorch GAN4.1.API4.2.GAN的搭建4.2.1.结果4.2.2.代码 4.3.示意图:star: 1.学习链接 …...

智慧能耗预付费系统解决方案——用户侧能源计量及收费
安科瑞电气股份有限公司 祁洁 15000363176 一、方案组织架构 二、方案特点 (1)多样组网,多样设备接入,多样部署; (2)集团管理、项目分级、分层拓扑; (3)…...

探秘大模型:《提示工程:技巧、方法与行业应用》背后的故事
提示工程是一种新兴的利用人工智能的技术,它通过设计提示引导生成式 AI 模型产生预期的输出,来提升人与 AI 的互动质量,激发 AI 模型的潜力,提升AI的应用水平。 为了让每一个人都拥有驱动大模型的能力,以微软全球副总裁…...

2024年光学通信和物联网、自动化控制和大数据国际会议(OCITACB2024)
2024年光学通信和物联网、自动化控制和大数据国际会议(OCITACB2024) 会议简介 2024年国际光通信与物联网、自动控制和大数据会议(OCITACB2024)的主要目标是促进光通信与物联网、自动管理和大数据领域的研发活动。另一个目标是促进研究人员、开发人员、工…...
q @ k运算及att = (q @ k.transpose(-2, -1))含义
以下代码经常在Transformer的算法中见到:q, k, v qkv[0], qkv[1], qkv[2] # query, key, value tensor q q * self.scale attn (q k.transpose(-2, -1))其中涉及到a b操作和transpose操作 a torch.Tensor([[1,2],[3,4]]) print(a)b torch.Tensor([[0.5,2],[…...
leetcode628-Maximum Product of Three Numbers
题目 给你一个整型数组 nums ,在数组中找出由三个数组成的最大乘积,并输出这个乘积。 示例 1: 输入:nums [1,2,3] 输出:6 分析 这道题目要求数组中三个数组成的最大乘积,由于元素有正数有负数ÿ…...

本地项目提交 Github
工具 GitIdeaGithub 账号 步骤 使用注册好的 Github 账号,登陆 Github; 创建 Repositories (存储库),注意填写图上的红框标注; 创建完成之后,找到存储库的 ssh 地址或 https 地址,这取决于你自己的配置…...

Idea中 maven 下载jar出现证书问题
目录 1: 具体错误: 2: 忽略证书代码: 3: 关闭所有idea, 清除缓存, 在下面添加如上忽略证书代码 4:执行 maven clean 然后刷刷新依赖 完成,撒花!&#x…...

ArcGIS Server 10发布要素服务时遇到的数据库注册问题总结(一)
工作环境: Windows 7 64 位旗舰版 ArcGIS Server 10.1 ArcGIS Desktop 10.1 IIS 7.0 开始的时候以为10.1发布要素服务和10.0一样,需要安装ArcSDE,后来查阅资料发现不需要,数据库直连方式就可以了。 首先我来说一下发布要素服…...
自我介绍的HTML 页面(入门)
一.前情提要 1.主要是代码示例,具体内容需自己填充 2.代码后是详解 二.代码实例和解析 代码 <!DOCTYPE html> <html lang"zh-CN"> <head> <meta charset"UTF-8"> <title>自我介绍页面</title>…...
负载均衡原理及算法
负载均衡(Load Balancing)是在计算机网络中,将工作负载(即请求)分配给多个资源,以实现最优资源利用、最大化性能、最小化延迟和提高可用性等目标的技术。负载均衡通常用于分布式系统、网络服务和服务器集群…...
【iOS ARKit】USDZ文件
USDZ 概述 ARKit 支持 USDZ(Universal Scene Description Zip,通用场景描述文件包)、Reality 两种格式的模型文件,得益于 USDZ的强大描述能力与网络传输便利性,使得iOS 设备能够在其信息(Message࿰…...

鹅厂实习offer
#转眼已经银四了,你收到offer了吗# 本来都打算四月再投实习了,突然三月初被wxg捞了(一年前找日常实习投的简历就更新了下),直接冲了,流程持续二十多天,结果是运气还不错,应该是部门比…...

极狐GitLab 如何在 helm 中恢复数据
本文作者:徐晓伟 GitLab 是一个全球知名的一体化 DevOps 平台,很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版,专门为中国程序员服务。可以一键式部署极狐GitLab。 本文主要讲述了如何在极狐GitLab …...

Hololens2远程音视频通话与AR远程空间标注,基于OpenXR+MRTK3+WebRTC实现
Hololens2远程音视频通话与AR远程空间标注 使用Unity2021.3.21版本开发,基于OpenXRMRTK3.0WebRTC实现。 (1)通过视频获取视频帧的矩阵的方法可以参考:https://learn.microsoft.com/zh-cn/windows/mixed-reality/develop/advanced…...

2024年03月CCF-GESP编程能力等级认证Scratch图形化编程二级真题解析
本文收录于专栏《Scratch等级认证CCF-GESP真题解析》,专栏总目录・点这里 一、单选题(一共 15 个题目,每题 2 分,共 30 分) 第1题 小杨的父母最近刚刚给他买了一块华为手表,他说手表上跑的是鸿蒙,这个鸿蒙是?( ) A、小程序 B、计时器 C、操作系统 D、神话人物 答案…...
开发语言漫谈-C#
C#的#,字面上的意思就是,也就是把C再。微软只所以搞C#就是要抗衡Java。微软当时搞了个J,被Java告了,没办法了只能另取炉灶。从纯技术角度来看,C#设计非常优秀,可以覆盖所有领域,是几乎唯一的全栈…...

微信小程序用户登录授权指定(旧版本)
配置旧版本基础库2.12.3 实现效果 点击登录按钮即可直接登录,获取用户昵称和头像 点击获取头像昵称按钮则需要授权,才能成功登录 代码实现 my.xml <!-- 登录页面,调试基础库为2.20.2库 --> <view class"mylogin"><block w…...

电商技术揭秘十五:数据挖掘与用户行为分析
相关系列文章 电商技术揭秘一:电商架构设计与核心技术 电商技术揭秘二:电商平台推荐系统的实现与优化 电商技术揭秘三:电商平台的支付与结算系统 电商技术揭秘四:电商平台的物流管理系统 电商技术揭秘五:电商平台…...

云原生:5分钟了解一下Kubernetes是什么
在当今的云计算时代,容器化技术变得越来越重要。它能够帮助开发者更高效地部署和管理应用程序。而Kubernetes,作为容器编排领域的领军者,正逐渐成为企业构建和管理云原生应用的核心工具。 近期将持续为大家分享Kubernetes相关知识ÿ…...

XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...