当前位置: 首页 > news >正文

数学建模-最优包衣厚度终点判别法(主成分分析)

💞💞 前言
hello hello~ ,这里是viperrrrrrr~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹
💥个人主页:viperrrrrrr的博客
💥 欢迎学习数学建模算法、大数据、前端等知识,让我们一起向目标进发!


基于近红外光谱的肠溶片最优包衣厚度终点判别法

       包衣是将片剂的外表面均匀地包裹上一层衣膜的过程,旨在控制药物在胃肠道中的释放部位和速度,遮盖苦味或不良气味,防潮、避光,改善外观等。然而,包衣膜太薄或太厚都不利于药效,并且包衣终点的判断方法目前存在一定的难度。近红外光谱技术(NIRS)是一种高效、无需试剂、无污染的分析方法,通过近红外光谱仪、化学计量学软件和应用模型,能快速、简便地实现多组分检测。为实现包衣终点的准确判断,对数据进行分析并完成以下问题:

问题一:对药品在不同包衣时间段包衣片剂的近红外光谱进行特征峰提取,选择具有有效信息的波长片段,即波长选择。

问题二:分析药品包衣厚度分类规律,建立合适的模型对药品包衣不同厚度进行划分,给出方法及结果,并进行灵敏度分析。

问题三:对于不同的包衣厚度,通过建立模型分析包衣之间的关联性,判别出最优的包衣厚度。

我们本次主要解决问题一

问题一

包衣是将片剂均匀地包裹衣膜,用于控制药物释放、遮盖苦味等。然而,包衣膜太薄或太厚都不利于药效,并且包衣终点的判断方法目前存在一定的难度。而近红外光谱技术是一种无污染、快速、多组分检测的分析方法,它适用于包衣终点的确定。本文基于一批现有的红外光谱相关数据,建立主成分分析聚类分析Bayes判别等模型和梯度下降算法,实现了片剂包衣最佳终点的判断。建立了主成分分析模型进行特征峰选取,利用主成分分析中广泛使用的降维技术,通过线性变换将高维数据集转化为低维数据集,同时保留数据集中的主要信息。由于不同的特征会有不同的量纲,这可能会影响到模型的性能,因此在应用PCA之前,通常需要对数据进行数据预处理。列出协方差矩阵反映数据集中各特征之间相关性的矩阵。通过求解协方差矩阵的特征向量和特征值,可以得到数据集的主成分。这些主成分是原始特征空间中的线性变换,它们是新的、相互独立的、能够捕捉到数据变动的最大方差的向量。

首先,通过滑动平均滤波法对附件数据进行平滑处理,即滤波。基于附件数据,由图(1)可见原始波长噪音数据较多,会影响最终数据结果[1]。使用5倍滑动滤波进行降噪处理后,由图(2)可见,成功过滤了部分噪声数据,使光谱变得更加平滑。

图1 原始数据图

图2 5倍滑动滤波处理后数据图

5.1.2主成分分析模型

根据问题一的分析,我们建立了主成分分析模型进行了对不同包衣时间段包衣片剂的近红外光谱的特征峰选取。首先,将波长定义为X轴,在不同包衣时间下的片剂包衣、素片为Y 轴,在此基础上进行主成分分析,在进行特征根选取时,发现有两种情况可以选择,第一种情况是选取特征根大于1的成分,可以选取出2个主成分,第二种情况是按照公式(1)算取方差贡献率以选取特征根,可以选取出3个主成分。再算取累计方差贡献率以验证特征峰选取的合理性[2]

(1)

通过minitab(见附录)从中提取的2个主成分的特征值,对第一种情况进行分析,见图3,可知其得分向量(具体见附录)和特征根为:

,方差累计贡献率rat_1=0.99785。说明选取的这两个主成分可以解释99.785%的原数据,具有较强的代表性。再对第二种情况进行分析,可以得到特征根和方差贡献率,方差累计贡献率rat_{2}=0.99897

说明选取的这三个主成分可以解释99.897%的原数据,具有更强的代表性。但是对比第一种情况,代表性并提升幅度过小,综合考虑后,最终在问题一中选取第一种情况,即两个主成分为最终解。

图3 主成分分析碎石图

相关文章:

数学建模-最优包衣厚度终点判别法(主成分分析)

💞💞 前言 hello hello~ ,这里是viperrrrrrr~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 💥个人主页&#xff…...

Mysql内存表及使用场景(12/16)

内存表(Memory引擎) InnoDB引擎使用B树作为主键索引,数据按照索引顺序存储,称为索引组织表(Index Organized Table)。 Memory引擎的数据和索引分开存储,数据以数组形式存放,主键索…...

Django交易商场

Hello,我是小恒不会java 最近学习django,写了一个demo,学到了不少东西。 我在GitHub上开源了,提示‘自行查看代码,维护,运行’。 最近有事,先发布代码了,我就随缘维护更新吧 介绍: 定…...

华为校园公开课走入上海交大,鸿蒙成为专业核心课程

4月12日,华为校园公开课在中国上海交通大学成功举办,吸引了来自计算机等相关专业的150余名学生参加。据了解,由吴帆、陈贵海、过敏意、吴晨涛、刘生钟等教授在中国上海交通大学面向计算机系本科生开设的《操作系统》课程,是该系学…...

【会员单位】泰州玉安环境工程有限公司

中华环保联合会理事单位 水环境治理专业委员会副主任委员单位 我会为会员单位提供服务: 1、企业宣传与技术项目对接; 2、企业标准、行业标准制定; 3、院士专家指导与人才培训 4、国际与国内会议交流 5、专精特新、小巨人等申报认证 6…...

Google视觉机器人超级汇总:从RT、RT-2到AutoRT/SARA-RT/RT-Trajectory、RT-H

前言 随着对视觉语言机器人研究的深入,发现Google的工作很值得深挖,比如RT-2 ​想到很多工作都是站在Google的肩上做产品和应用,​Google真是科技进步的核心推动力,做了大量大模型的基础设施,服(推荐重点关注下Googl…...

LeetCode-1143. 最长公共子序列【字符串 动态规划】

LeetCode-1143. 最长公共子序列【字符串 动态规划】 题目描述:解题思路一:动规五部曲解题思路二:1维DP解题思路三:0 题目描述: 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。…...

从0开始创建单链表

前言 这次我来为大家讲解链表,首先我们来理解一下什么是单链表,我们可以将单链表想象成火车 每一节车厢装着货物和连接下一个车厢的链子,单链表也是如此,它是将一个又一个的数据封装到节点上,节点里不仅包含着数据&…...

STC89C52学习笔记(十)

STC89C52学习笔记(十) 综述:本文介绍了DS18B20和单总线协议,以及讲述了如何使用DS18B20测量温度。 一、单总线协议 1.只有一根通讯线:DQ (常见的运用单总线的两种设备:DS18B20和DHT11&#…...

初识二叉树和二叉树的基本操作

目录 一、树 1.什么是树 2. 与树相关的概念 二、二叉树 1.什么是二叉树 2.二叉树特点 3.满二叉树与完全二叉树 4.二叉树性质 相关题目: 5.二叉树的存储 6.二叉树的遍历和基本操作 二叉树的遍历 二叉树的基本操作 一、树 1.什么是树 子树是不相交的;…...

如何开辟动态二维数组(C语言)

1. 开辟动态二维数组 C语言标准库中并没有可以直接开辟动态二维数组的函数,但我们可以通过动态一维数组来模拟动态二维数组。 二维数组其实可以看作是一个存着"DataType []"类型数据的一维数组,也就是存放着一维数组地址的一维数组。 所以&…...

【MATLAB第104期】基于MATLAB的xgboost的敏感性分析/特征值排序计算(针对多输入单输出回归预测模型)

【MATLAB第104期】基于MATLAB的xgboost的敏感性分析/特征值排序计算(针对多输入单输出回归预测模型) 因matlab的xgboost训练模型不含敏感性分析算法,本文通过使用single算法,即单特征因素对输出影响进行分析,得出不同…...

C语言程序与设计——工程项目开发

之前我们已经了解了C语言的基础知识部分,掌握这些之后,基本就可以开发一些小程序了。在开发时,就会出现合作的情况,C语言是如何协作开发的呢,将在这一篇文章进行演示。 工程项目开发 在开发过程中,你接到…...

【Java核心技术】第6章 接口

1 接口 接口不是类&#xff0c;而是对希望符合这个接口的类的一组需求 1.1 Comparable 接口 要对对象进行比较&#xff0c;就要实现(implement)比较(comparable)接口 注意&#xff1a; implements Comparable<Manager> Comparable接口是泛型接口 class Manager exten…...

【Java探索之旅】从输入输出到猜数字游戏

&#x1f3a5; 屿小夏 &#xff1a; 个人主页 &#x1f525;个人专栏 &#xff1a; Java编程秘籍 &#x1f304; 莫道桑榆晚&#xff0c;为霞尚满天&#xff01; 文章目录 &#x1f4d1;前言一、输入输出1.1 输出到控制台1.2 从键盘输入 二、猜数字游戏2.1 所需知识&#xff1a…...

【动态规划】【01背包】Leetcode 1049. 最后一块石头的重量 II

【动态规划】【01背包】Leetcode 1049. 最后一块石头的重量 II 解法 ---------------&#x1f388;&#x1f388;题目链接&#x1f388;&#x1f388;------------------- 解法 &#x1f612;: 我的代码实现> 动规五部曲 ✒️确定dp数组以及下标的含义 dp[j]表示容量为…...

2023 年上海市大学生程序设计竞赛 - 四月赛

A. 宝石划分 A. 宝石划分 - 2023 年上海市大学生程序设计竞赛 - 四月赛 - ECNU Online Judge 找距离N最近的M的因数q&#xff0c;输出M/q 如果是暴力所的话&#xff0c;会超时 #include <bits/stdc.h> using namespace std; int main(){ios::sync_with_stdio(false)…...

别让这6个UI设计雷区毁了你的APP!

一款成功的APP不仅仅取决于其功能性&#xff0c;更取决于用户体验&#xff0c;这其中&#xff0c;UI设计又至关重要。优秀的UI设计能够为用户带来直观、愉悦的交互体验&#xff0c;甚至让用户“一见钟情”&#xff0c;从而大大提高产品吸引力。 然而&#xff0c;有很多设计师在…...

继承【C/C++复习版】

目录 一、什么是继承&#xff1f;怎么定义继承&#xff1f; 二、继承关系和访问限定符&#xff1f; 三、基类和派生类对象可以赋值转换吗&#xff1f; 四、什么是隐藏&#xff1f;隐藏vs重载&#xff1f; 五、派生类的默认成员函数&#xff1f; 1&#xff09;派生类构造函…...

题目 2694: 蓝桥杯2022年第十三届决赛真题-最大数字【暴力解法】

最大数字 原题链接 &#x1f970;提交结果 思路 对于每一位&#xff0c;我我们都要尽力到达 9 所以我们去遍历每一位, 如果是 9 直接跳过这一位 如果可以上调到 9 我们将这一位上调到 9 &#xff0c;并且在a 中减去对应的次数 同样的&#xff0c;如果可以下调到 9&#xff0c;我…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

书籍“之“字形打印矩阵(8)0609

题目 给定一个矩阵matrix&#xff0c;按照"之"字形的方式打印这个矩阵&#xff0c;例如&#xff1a; 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为&#xff1a;1&#xff0c;…...