当前位置: 首页 > news >正文

大模型(Large Models):探索人工智能领域的新边界

在这里插入图片描述


🌟文章目录

  • 🌟大模型的定义与特点
  • 🌟模型架构
  • 🌟大模型的训练策略
  • 🌟大模型的优化方法
  • 🌟大模型的应用案例


随着人工智能技术的飞速发展,大模型(Large Models)成为了引领深度学习浪潮的关键技术之一。大模型凭借其巨大的参数规模、复杂的网络结构和强大的学习能力,在各种应用场景中展现出了卓越的性能。本文将从以下几个方面,包括大模型的定义与特点,模型架构、大模型的训练策略、大模型的优化方法和大模型的应用案例等方面,为读者提供关于大模型的介绍及相关知识的了解。
在这里插入图片描述

🌟这里先给大家推荐5个可直达的大模型AI的网址

  • Aivesa智能
    可直连的ChatGPT网站。
    链接:https://aivesa.cn/
    在这里插入图片描述

  • Midjourney
    Midjourney是一个探索新媒体以扩展人类想象力的人工智能实验室,界面很魔幻。
    链接:https://www.midjourney.com/home?ref=www.naviai.cn
    在这里插入图片描述

  • CodeConvert AI
    CodeConvert AI是一个提供代码转换工具的网站,可以在不同的编程语言之间进行代码转换,例如Python、R、Java、C++、Javascript和Golang。
    链接:https://www.codeconvert.ai/?ref=www.naviai.cn
    在这里插入图片描述

  • WriteGPT
    WriteGPT是一个能够让专业人士变得超凡的项目。通过使用无缝键盘热键访问WriteGPT,克服不良的浏览习惯。此外,我们还能够快速地处理工程问题,有效地阅读、写作、重写等。
    链接:https://writegpt.ai/
    在这里插入图片描述

  • BigJPG
    BigJPG是一个免费的在线图片无损放大工具,使用人工智能深度卷积神经网络技术,可智能无损放大图片,可放大4K级超高清分辨率(4000x4000)图片,最大32倍放大,效果秒杀PhotoZoom。
    链接:https://bigjpg.com/?ref=www.naviai.cn
    在这里插入图片描述

🌟大模型的定义与特点

大模型通常指的是参数规模庞大、结构复杂的深度学习模型。
其特点包括:

  1. 参数众多:大模型通常拥有数亿甚至数十亿的参数,使得模型能够学习到更丰富的特征表示。
  2. 结构复杂:大模型往往采用多层卷积、注意力机制等复杂的网络结构,以提高模型的表示能力。
  3. 数据驱动:大模型的训练需要大量的数据,这些数据通常来自各种来源,如文本、图像、音频等。
  4. 计算资源消耗大:由于参数规模庞大,大模型的训练需要高性能计算机集群,且训练时间较长。

🌟模型架构

大模型的架构与设计是影响其性能的关键因素,大模型的架构通常采用深度学习中的神经网络模型,如Transformer、CNN(卷积神经网络)等。其中,Transformer架构因其出色的性能和可扩展性而备受青睐。Transformer通过自注意力机制(Self-Attention Mechanism)和位置编码(Positional Encoding)等技术,实现了对序列数据的强大建模能力。在大模型中,Transformer架构经常被用于处理自然语言处理(NLP)任务,如机器翻译、文本生成等。

推荐一篇关于Transformer学习的博文:http://t.csdnimg.cn/4q6cv


🌟大模型的训练策略

在这里插入图片描述

大模型的训练是一项极其复杂和耗时的任务,需要采用一系列高效的训练策略。以下是大模型训练中常用的几种策略:

  • 分布式训练
    分布式训练是将模型训练任务拆分成多个子任务,并在多个计算节点上并行执行。这样可以充分利用计算资源,加快训练速度。在分布式训练中,常用的框架有TensorFlow的Horovod和PyTorch的DistributedDataParalle等。

  • 数据并行
    数据并行是一种将数据集分割成多个子集,并在不同计算节点上并行处理的方法。每个节点处理一个子集的数据,并更新模型的部分参数。通过数据并行,可以显著提高训练速度和效率。

  • 混合精度训练
    混合精度训练是一种利用不同数据精度(如FP32、FP16等)进行训练的方法。通过降低数据精度,可以减少计算资源的消耗和内存占用,从而加速训练过程。同时,混合精度训练还需要引入一些特殊技术,如梯度缩放和损失缩放等,以保证模型的训练稳定性和收敛性。


🌟大模型的优化方法

在大模型的训练过程中,优化方法的选择对模型的性能和收敛速度至关重要。以下是大模型训练中常用的几种优化方法:

  • 梯度下降算法
    梯度下降算法是一种基于梯度信息的优化方法,通过不断更新模型的参数来最小化损失函数。在大模型训练中,常用的梯度下降算法有SGD(随机梯度下降)、Adam等。

梯度下降算法学习博文推荐:
https://blog.csdn.net/iqdutao/article/details/107174240

  • 学习率调整策略
    学习率是影响模型训练效果的重要超参数之一。在大模型训练中,通常采用学习率衰减(Learning Rate Decay)或自适应学习率调I (Adaptive Learning Rate Adjustment)等策略来动态调整学习率,以提高模型的训练效果。

学习率调整策略博文推荐:
https://zhuanlan.zhihu.com/p/52608023

  • 正则化技术
    正则化技术是一种用于防止模型过拟合的技术。在大模型训练中,常用的正则化技术有L1正则化、L2正则化、Dropout等。这些技术可以通过对模型参数进行约束或随机丢弃部分神经元来降低模型的复杂度,从而提高模型的泛化能力。

正则化技术学习博文推荐:
https://zhuanlan.zhihu.com/p/67931198


🌟大模型的应用案例

大模型凭借其强大的学习能力和表示能力,在各个领域都取得了广泛的应用。以下是一些大模型的应用案例:

  • 自然语言处理(NLP)
    在NLP领域,大模型被广泛应用于文本生成、机器翻译、问答系统等任务。例如,OpenAI的GPT系列模型在文本生成方面取得了显著成果;Google的Transformer模型在机器翻译方面取得了突破性的性能提升。
    在这里插入图片描述

  • 计算机视觉(CV)
    在计算机视觉领域,大模型也被用于图像分类、目标检测等任务。例如,Facebook的ResNet系列模型在图像分类任务上取得了卓越的性能;谷歌的EfficientNet模型在保持高性能的同时实现了更小的模型尺寸和更快的推理速度。
    在这里插入图片描述

  • 语音识别与生成
    在语音识别与生成领域,大模型也发挥了重要作用。例如,谷歌的Wavenet模型在语音合成方面取得了逼真的效果;百度的Deep Speech系列模型在语音识别方面实现了高效准确的性能。
    在这里插入图片描述

大模型凭借其巨大的参数规模、复杂的网络结构和强大的学习能力,在各个领域都展现出了卓越的性能和应用前景。随着技术的不断发展和硬件设备的升级换代,大模型将在未来发挥更加重要的作用并带来更加丰富多彩的应用场景。


本篇完~

相关文章:

大模型(Large Models):探索人工智能领域的新边界

🌟文章目录 🌟大模型的定义与特点🌟模型架构🌟大模型的训练策略🌟大模型的优化方法🌟大模型的应用案例 随着人工智能技术的飞速发展,大模型(Large Models)成为了引领深度…...

缓存相关知识总结

一、缓存的作用和分类 缓存可以减少数据库的访问压力,提升整个网站的数据访问速度,改善数据库的写入性能。缓存可以分为两种: 缓存在应用服务器上的本地缓存:访问速度快,但受应用服务器内存限制 缓存在专门的分布式缓存…...

Mapmost Alpha:开启三维城市场景创作新纪元

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…...

【大模型完全入门手册】——引言

博主作为一名大模型开发算法工程师,很希望能够将所学到的以及实践中感悟到的内容梳理成为书籍。作为先导,以专栏的形式先整理内容,后续进行不断更新完善。希望能够构建起从理论到实践的全流程体系。 助力更多的人了解大模型,接触大模型,一起感受AI的魅力! 在当今人工智能…...

在 Vue 3 中使用 Axios 发送 POST 请求

在 Vue 3 中使用 Axios 发送 POST 请求需要首先安装 Axios,然后在 Vue 组件或 Vuex 中使用它。以下是一个简单的安装和使用案例: 安装 Axios 你可以使用 npm 或 yarn 来安装 Axios: npm install axios # 或者 yarn add axios 使用 Axios…...

【LeetCode刷题记录】189. 轮转数组

189 轮转数组 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,3,4,5] 向右轮转 3 步: …...

1.open3d处理点云数据的常见方法

1. 点云的读取、可视化、保存 在这里是读取的点云的pcd文件,代码如下: import open3d as o3dif __name__ __main__:#1.点云读取point o3d.io.read_point_cloud("E:\daima\huawei\img\change2.pcd")print(">",point)#2.点云可视…...

https和http有什么区别,为什么要用https

HTTPS(Hypertext Transfer Protocol Secure)和HTTP(Hypertext Transfer Protocol)之间的主要区别在于安全性。 安全性: HTTP是一种明文传输协议,数据在客户端和服务器之间以明文形式传输,容易…...

微前端框架主流方案剖析

微前端架构是为了在解决单体应用在一个相对长的时间跨度下,由于参与的人员、团队的增多、变迁,从一个普通应用演变成一个巨石应用(Frontend Monolith)后,随之而来的应用不可维护的问题。这类问题在企业级 Web 应用中尤其常见。 微前端框架内的各个应用都支持独立开发部署、不…...

安卓逆向之-Xposed RPC

引言: 逆向为最终的协议,或者爬虫的作用。 有几种方式,比如直接能力强,搞成协议。 现在好多加密解密都写入到so ,所以可以使用unidbg 一个可以模拟器so 执行的环境的开源项目。RPC 调用,又分为Frida, 还有今天讲的Xposed RPC。 原理: Xposed 可以hook ,然后可以直接…...

【排序 贪心】3107. 使数组中位数等于 K 的最少操作数

算法可以发掘本质,如: 一,若干师傅和徒弟互有好感,有好感的师徒可以结对学习。师傅和徒弟都只能参加一个对子。如何让对子最多。 二,有无限多1X2和2X1的骨牌,某个棋盘若干格子坏了,如何在没有坏…...

预览pdf文件和Excel文件

开发的时候要一个可上传下载预览的静态页面以下是数据html <el-table v-loading"loading" :data"fileList" selection-change"handleSelectionChange"><el-table-column type"selection" width"55" align"ce…...

RT-thread线程间同步:事件集/消息队列/邮箱功能

一,事件集 1,事件集作用 事件集主要用于线程间的同步,与信号量不同,它的特点是可以实现一对多,多对多的同步。即一个线程与多个事件的关系可设置为:其中任意一个事件唤醒线程,或几个事件都到达后才唤醒线程进行后续的处理;同样事件也可以是多个线程同步多个事件。 2,…...

【机器学习】一文掌握机器学习十大分类算法(上)。

十大分类算法 1、引言2、分类算法总结2.1 逻辑回归2.1.1 核心原理2.1.2 算法公式2.1.3 代码实例 2.2 决策树2.2.1 核心原理2.2. 代码实例 2.3 随机森林2.3.1 核心原理2.3.2 代码实例 2.4 支持向量机2.4.1 核心原理2.4.2 算法公式2.4.3 代码实例 2.5 朴素贝叶斯2.5.1 核心原理2.…...

策略模式(知识点)——设计模式学习笔记

文章目录 0 概念1 使用场景2 优缺点2.1 优点2.2 缺点 3 实现方式4 和其他模式的区别5 具体例子实现5.1 实现代码 0 概念 定义&#xff1a;定义一个算法族&#xff0c;并分别封装起来。策略让算法的变化独立于它的客户&#xff08;这样就可在不修改上下文代码或其他策略的情况下…...

Python学习从0开始——专栏汇总

Python学习从0开始——000参考 一、推荐二、基础三、项目一 一、推荐 Hello World in Python - 这个项目列出了用Python实现的各种"Hello World"程序。 Python Tricks - 这个项目包含了Python中的高级技巧和技术。 Think Python - 这是一本教授Python的在线书籍&…...

【iOS ARKit】Web 网页中嵌入 AR Quick Look

在支持 ARKit 的设备上&#xff0c;iOS 12 及以上版本系统中的 Safari浏览器支持 AR Quick Look&#xff0c; 因此可以通过浏览器直接使用3D/AR 的方式展示 Web 页面中的模型文件&#xff0c;目前 Web 版本的AR Quick Look 支持USDZ 格式文件。苹果公司有一个自建的3D模型示例库…...

Java基础-知识点03(面试|学习)

Java基础-知识点03 String类String类的作用及特性String不可以改变的原因及好处String、StringBuilder、StringBuffer的区别String中的replace和replaceAll的区别字符串拼接使用还是使用StringbuilderString中的equal()与Object方法中equals()区别String a new String("a…...

【GIS学习笔记】ArcGIS/QGIS如何修改字段名称、调整字段顺序?

在先前的ArcGIS学习中&#xff0c;了解到字段名称是不能修改的&#xff0c;只能用新建一个字段赋值过去再删除原字段这种方法实现&#xff0c;字段顺序的调整如果通过拖拽也是不能持久的&#xff0c;需要用导出一个新数据这种方法进行保存&#xff0c;可参考以下链接&#xff1…...

Study Pyhton

PyCharm PyCharm是一个写python代码的软件&#xff0c;用PyCharm写代码比较方便。 PyCharm快捷键ctrl alt s打开软件设置ctrl d复制当前行代码 shift alt 上\下将当前行代码上移或下移crtl shift f10运行当前代码文件shiftf6重命名文件 ctrl a全选ctrl c\v\x复制、粘贴、…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...