注意力机制篇 | YOLOv8改进之清华开源ACmix:自注意力和CNN的融合 | 性能速度全面提升
前言:Hello大家好,我是小哥谈。混合模型ACmix将自注意力机制和卷积神经网络进行整合,使其同时具有自注意力机制和卷积神经网络的优点。这是清华大学、华为和北京人工智能研究院共同发布在2022年CVPR中的论文。ACmix结合了自注意力机制和卷积神经网络的优势,以提高模型的性能。🌈
目录
🚀1.基础概念
🚀2.网络结构
相关文章:

注意力机制篇 | YOLOv8改进之清华开源ACmix:自注意力和CNN的融合 | 性能速度全面提升
前言:Hello大家好,我是小哥谈。混合模型ACmix将自注意力机制和卷积神经网络进行整合,使其同时具有自注意力机制和卷积神经网络的优点。这是清华大学、华为和北京人工智能研究院共同发布在2022年CVPR中的论文。ACmix结合了自注意力机制和卷积神经网络的优势,以提高模型的性能…...
Go语言支持重载吗?如何实现重写?
Go语言不支持传统意义上的函数和方法重载。在Go语言中,函数名或方法名不能相同但参数列表不同,因为这会导致编译错误。 然而,可以通过方法重写(override)来实现类似的功能。方法重写是指在子类中定义一个与父类同名的…...
Spring中基于事件监听驱动 和 线程池的异步任务
文章目录 事件监听驱动 与 异步事件源ApplicationContextAware接口 发布事件事件实体监听事件实现异步注入綫程池 事件驱动机制,与MQ消息队列比较 事件监听驱动 与 异步 事件监听驱动优点:解耦,将 事件和业务进行解耦,通过Asyc注解…...

C++ 优先级队列用法详解与模拟实现
文章目录 C 优先级队列用法与模拟实现介绍用法头文件1.创建优先级队列priority_queue 2. 插入元素push 3. 删除元素pop 访问顶部元素top 检查优先级队列的大小size 检查优先级队列是否为空empty 模拟实现 C 优先级队列用法与模拟实现 介绍 优先级队列(Priority Qu…...
Linux进阶之旅:深入探索Linux的高级功能
文章目录 Linux进阶之旅:深入探索Linux的高级功能1. Shell脚本编程2. 进程管理3. 网络管理4. 文本处理5. 系统监控6. 总结 Linux进阶之旅:深入探索Linux的高级功能 在上一篇博客中,我们对Linux操作系统进行了入门级的介绍,包括Linux的特点、发行版、安装方法以及基本使用。接下…...

【Java】内存可见性问题是什么?
文章目录 内存模型内存可见性解决方案volatile 内存模型 什么是JAVA 内存模型? Java Memory Model (JAVA 内存模型)是描述线程之间如何通过内存(memory)来进行交互。 具体说来, JVM中存在一个主存区(Main Memory或Java Heap Mem…...

Guava里一些比较常用的工具
随着java版本的更新提供了越来越多的语法和工具来简化日常开发,但是我们一般用的比较早的版本所以体验不到。这时就用到了guava这个包。guava提供了很多方便的工具方法,solar框架就依赖了guava的16.0.1版本,这里稍微介绍下。 一、集合工具类…...
在windows系统中【.gz.tar】和【.whl】文件分别应该怎么下载到conda的某个虚拟环境中
在 Windows 系统中,你可以按照以下步骤将 .gz.tar 和 .whl 文件下载到 Conda 的某个虚拟环境中: 激活虚拟环境:打开 Anaconda Prompt 或者命令行窗口,使用以下命令激活你想要安装文件的虚拟环境: conda activate <虚…...
Rust - 数据类型
Rust 是静态编译语言,在编译时必须知道所有变量的类型。 基于使用的值,编译器通常能推断出它的具体类型,但如果可能的类型比较多,例如把String转换为整数的parse方法,就必须添加类型的标注,否则编译会报错…...

基于springboot实现洗衣店订单管理系统项目【项目源码+论文说明】计算机毕业设计
基于springboot实现洗衣店订单管理系统演示 摘要 随着信息互联网信息的飞速发展,无纸化作业变成了一种趋势,针对这个问题开发一个专门适应洗衣店业务新的交流形式的网站。本文介绍了洗衣店订单管理系统的开发全过程。通过分析企业对于洗衣店订单管理系统…...
Java基础知识总结(53)
(1)集合框架概述 Java集合大致分为List、Set、Map和Queue Collection是一个顶级接口,其子接口有,List、Set、Queue List:有序(存放和取出顺序是一致的)、有索引、可重复 Set:无序、无索引、不可重复 &…...

196算法之谜在 JSP 中使用内置对象 request 获取 form 表单的文本框 text 提交的数据。
(1)编写 inputNumber . jsp ,该页面提供一个 form 表单,该 form 表单提供一个文本框 text ,用于用户输入一个正整数,用户在 form 表单中输入的数字,单击 submit 提交键将正整数提交给 huiwenNumber . jsp 页…...
初识责任链模式--一起学习吧之数据库
一、定义 责任链模式是一种对象行为型模式,用于处理请求发送者和多个请求处理者之间的耦合问题。在这种模式中,请求的处理者通过前一对象记住其下一个对象的引用而连成一条链。当有请求发生时,请求会沿着这条链传递,直到有对象处…...

解决Xshell登录云服务器的免密码和云服务器生成子用户问题
Xshell登录云服务器的免密码问题 前言一、Xshell登录云服务器的免密码操作实践 二、centos创建用户创建用户实操删除用户更改用户密码直接删除子用户 前言 Xshell登录云服务器免密码问题的解决方案通常涉及使用SSH密钥对。用户生成一对密钥(公钥和私钥)…...
webRtc生产环境实用方法
最近做了几个项目发现多个项目反反复复会出现几个高频的需求, 都依赖于获取系统采集设备和指定设备id获取媒体流;为了不在反复书写总结2个公用方法; 检索当前系统所有可用设备 /*** 检索当前系统所有可用设备* returns {* audioInputOption…...

Java String、StringBuffer
构造方法 通过字符数组构造,结果abc 通过字节数组构造,结果abc //把字符串转化为字节数组 当前代码编译环境为UTF-8,出现异常时,直接抛出异常即可。mainthrows UnsupportedEncodingException 编译环境为UTF-8,但是运用gb2312这个…...
LangChain调用tool集的原理剖析(包懂)
一、需求背景 在聊天场景中,针对用户的问题我们希望把问题逐一分解,每一步用一个工具得到分步答案,然后根据这个中间答案继续思考,再使用下一个工具得到另一个分步答案,直到最终得到想要的结果。 这个场景非常匹配la…...

如何正确使用数字化仪前端信号调理?(一)
一、前言 板卡式的数字转换器和类似测量仪器,比如图1所示的德思特TS-M4i系列,都需要为各种各样的特性信号与内部模数转换器(ADC)的固定输入范围做匹配。 图1:德思特TS-M4i系列高速数字化仪,包括2或4通道版…...

实验5 流程图和盒图ns图
一、实验目的 通过绘制流程图和盒图,熟练掌握流程图和盒图的基本原理。 能对简单问题进行流程图和盒图的分析,独立地完成流程图和盒图设计。 二、实验项目内容(实验题目) 1、用Microsoft Visio绘制下列程序的程序流程图。 若…...

[Java、Android面试]_18_详解Handler机制 常见handler面试题(非常重要,非常高频!!)
本人今年参加了很多面试,也有幸拿到了一些大厂的offer,整理了众多面试资料,后续还会分享众多面试资料。 整理成了面试系列,由于时间有限,每天整理一点,后续会陆续分享出来,感兴趣的朋友可关注收…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...

【堆垛策略】设计方法
堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下…...
二维FDTD算法仿真
二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...
13.10 LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析
LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析 LanguageMentor 对话式训练系统架构与实现 关键词:多轮对话系统设计、场景化提示工程、情感识别优化、LangGraph 状态管理、Ollama 私有化部署 1. 对话训练系统技术架构 采用四层架构实现高扩展性的对话训练…...
Netty自定义协议解析
目录 自定义协议设计 实现消息解码器 实现消息编码器 自定义消息对象 配置ChannelPipeline Netty提供了强大的编解码器抽象基类,这些基类能够帮助开发者快速实现自定义协议的解析。 自定义协议设计 在实现自定义协议解析之前,需要明确协议的具体格式。例如,一个简单的…...

【QT控件】显示类控件
目录 一、Label 二、LCD Number 三、ProgressBar 四、Calendar Widget QT专栏:QT_uyeonashi的博客-CSDN博客 一、Label QLabel 可以用来显示文本和图片. 核心属性如下 代码示例: 显示不同格式的文本 1) 在界面上创建三个 QLabel 尺寸放大一些. objectName 分别…...