当前位置: 首页 > news >正文

实习僧网站的实习岗位信息分析

目录

    • 背景描述
    • 数据说明
    • 数据集来源
    • 问题描述
      • 分析目标以及导入模块
      • 1. 数据导入
      • 2. 数据基本信息和基本处理
      • 3. 数据处理
        • 3.1 新建data_clean数据框
        • 3.2 数值型数据处理
          • 3.2.1 “auth_capital”(注册资本)
          • 3.2.2 “day_per_week”(每周工作天数)
          • 3.2.3 “num_employee”(公司规模)
          • 3.2.4 “time_span”(实习月数)
          • 3.2.5 “wage”(每天工资)
        • 3.3 时间数据处理
          • 3.3.1 “est_date”(公司成立日期)
          • 3.3.2 “job_deadline”(截止时间)
          • 3.3.3 “released_time”(发布时间)
          • 3.3.4 “update_time”(更新时间)
        • 3.4 字符型数据处理
          • 3.4.1 “city”(城市)处理
          • 3.4.2 “com_class”(公司和企业类型)处理
          • 3.4.3 “com_logo”(公司logo)、“industry”(行业)也暂时不处理
      • 4. 数据分析
        • 4.1 数据基本情况
        • 4.2 城市与职位数量
        • 4.3 薪资
          • 4.3.1 平均薪资
          • 4.3.2 薪资与城市
        • 4.4 学历
          • 4.4.1 数据挖掘、机器学习算法的学历要求
          • 4.4.2 学历与薪资
        • 4.5 行业
        • 4.6 公司
          • 4.6.1 公司与职位数量、平均实习月薪
          • 4.6.2 公司规模与职位数量
          • 4.6.3 公司规模与实习月薪
          • 4.6.4 公司实习期长度
          • 4.6.5 企业成立时间
      • 5. 给小E挑选实习公司
      • 6. logo拼图
    • 附录

背景描述

主要对“实习僧网站”招聘数据挖掘、机器学习的实习岗位信息进行分析。数据主要来自“数据挖掘”、“机器学习”和“算法”这3个关键词下的数据。由于原始数据还比较脏,本文使用pandas进行数据处理和分析,结合seaborn和pyecharts包进行数据可视化。

数据说明

准备数据集以及一个空文件
1.datamining.csv
2.machinelearning.csv
3.mlalgorithm.csv
4.data_clean.csv(空文件,以便清洗后存放干净数据)

数据集来源

https://github.com/Alfred1984/interesting-python/tree/master/shixiseng

问题描述

该数据主要用于“实习僧网站”招聘数据挖掘、机器学习的实习岗位信息进行分析

分析目标以及导入模块

1.由于小E想要找的实习公司是机器学习算法相关的工作,所以只对“数据挖掘”、“机器学习”、“算法”这三个关键字进行了爬取;
2.因此,分析目标就是国内公司对机器学习算法实习生的需求状况(仅基于实习僧网站),以及公司相关的分析。

在这里插入图片描述

1. 数据导入

在这里插入图片描述

2. 数据基本信息和基本处理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

3. 数据处理

3.1 新建data_clean数据框

在这里插入图片描述

3.2 数值型数据处理
3.2.1 “auth_capital”(注册资本)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

3.2.2 “day_per_week”(每周工作天数)

在这里插入图片描述

在这里插入图片描述

3.2.3 “num_employee”(公司规模)

在这里插入图片描述

在这里插入图片描述

3.2.4 “time_span”(实习月数)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2.5 “wage”(每天工资)

在这里插入图片描述
在这里插入图片描述

3.3 时间数据处理
3.3.1 “est_date”(公司成立日期)

在这里插入图片描述
在这里插入图片描述

3.3.2 “job_deadline”(截止时间)

在这里插入图片描述
在这里插入图片描述

3.3.3 “released_time”(发布时间)

在这里插入图片描述
在这里插入图片描述

3.3.4 “update_time”(更新时间)

在这里插入图片描述

在这里插入图片描述

3.4 字符型数据处理
3.4.1 “city”(城市)处理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.4.2 “com_class”(公司和企业类型)处理

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.4.3 “com_logo”(公司logo)、“industry”(行业)也暂时不处理

在这里插入图片描述

4. 数据分析

4.1 数据基本情况

在这里插入图片描述
在这里插入图片描述

4.2 城市与职位数量

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.3 薪资
4.3.1 平均薪资

在这里插入图片描述

4.3.2 薪资与城市

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.4 学历
4.4.1 数据挖掘、机器学习算法的学历要求

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.4.2 学历与薪资

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

4.5 行业

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.6 公司
4.6.1 公司与职位数量、平均实习月薪

在这里插入图片描述

4.6.2 公司规模与职位数量

在这里插入图片描述

4.6.3 公司规模与实习月薪

在这里插入图片描述

4.6.4 公司实习期长度

在这里插入图片描述

4.6.5 企业成立时间

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 给小E挑选实习公司

在这里插入图片描述
在这里插入图片描述

6. logo拼图

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


附录

导入模块

!pip install pyecharts==0.5.6
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import pyecharts
plt.style.use('ggplot')
%matplotlib inline
from pylab import mpl
#mpl.rcParams['font.sans-serif'] = ['SimHei']  #解决seaborn中文字体显示问题
plt.rc('figure', figsize=(10, 10))  #把plt默认的图片size调大一点

1. 数据导入

data_dm = pd.read_csv("datamining.csv")
data_ml = pd.read_csv("machinelearning.csv")
data_al = pd.read_csv("mlalgorithm.csv")
data = pd.concat([data_dm, data_ml, data_al], ignore_index = True)

2. 数据基本信息和基本处理

data.sample(3)
data.loc[666]
data.info()
data.drop_duplicates(subset='job_links', inplace=True)
data.shape
##填充前的信息表
data.info()
####将所有缺失值均补为'无')
data=data.fillna('无')##填充后的信息表
data.info()

*3. 数据处理
3.1 新建data_clean数据框

data_clean = data.drop(['com_id', 'com_links', 'com_location', 'com_website', 'com_welfare', 'detailed_intro', 'job_detail'], axis = 1)

3.2 数值型数据处理
3.2.1 “auth_capital”(注册资本)

data.auth_capital.sample(20)
auth_capital = data['auth_capital'].str.split(':', expand = True)
auth_capital.sample(5)
auth_capital['num'] = auth_capital[1].str.extract('([0-9.]+)', expand=False).astype('float')
auth_capital.sample(5)
auth_capital[1].str.split('万', expand = True)[1].unique()
def get_ex_rate(string):if string == None:return np.nanif '人民币' in string:return 1.00elif '港' in string:return 0.80elif '美元' in string:return 6.29elif '欧元' in string:return 7.73elif '万' in string:return 1.00else:return np.nanauth_capital['ex_rate'] = auth_capital[1].apply(get_ex_rate)
auth_capital.sample(5)
data_clean['auth_capital'] = auth_capital['num'] * auth_capital['ex_rate']
data_clean['auth_capital'].head()   ##此方法用于返回数据帧或序列的前n行(默认值为5)。

3.2.2 “day_per_week”(每周工作天数)

data.day_per_week.unique()
data_clean.loc[data['day_per_week'] == '2天/周', 'day_per_week'] = 2
data_clean.loc[data['day_per_week'] == '3天/周', 'day_per_week'] = 3
data_clean.loc[data['day_per_week'] == '4天/周', 'day_per_week'] = 4
data_clean.loc[data['day_per_week'] == '5天/周', 'day_per_week'] = 5
data_clean.loc[data['day_per_week'] == '6天/周', 'day_per_week'] = 6

3.2.3 “num_employee”(公司规模)

data.num_employee.unique()
data_clean.loc[data['num_employee'] == '少于15人', 'num_employee'] = '小型企业'
data_clean.loc[data['num_employee'] == '15-50人', 'num_employee'] = '小型企业'
data_clean.loc[data['num_employee'] == '50-150人', 'num_employee'] = '小型企业'
data_clean.loc[data['num_employee'] == '150-500人', 'num_employee'] = '中型企业'
data_clean.loc[data['num_employee'] == '500-2000人', 'num_employee'] = '中型企业'
data_clean.loc[data['num_employee'] == '2000人以上', 'num_employee'] = '大型企业'
data_clean.loc[data['num_employee'] == '5000人以上', 'num_employee'] = '大型企业'
data_clean.loc[data['num_employee'].isna(), 'num_employee'] = np.nan

3.2.4 “time_span”(实习月数)

data.time_span.unique()
mapping = {}
for i in range(1,19):mapping[str(i) + '个月'] = i
print(mapping)
data_clean['time_span'] = data['time_span'].map(mapping)
data_clean.head(3)

3.2.5 “wage”(每天工资)

data['wage'].sample(5)
data_clean['average_wage'] = data['wage'].str.extract('([0-9.]+)-([0-9.]+)/天', expand=True).astype('int').mean(axis = 1)
data_clean['average_wage'].head()

3.3 时间数据处理
3.3.1 “est_date”(公司成立日期)

data['est_date'].sample(5)
data_clean['est_date'] = pd.to_datetime(data['est_date'].str.extract('成立日期:([0-9-]+)', expand=False))
data_clean['est_date'].sample(5)

3.3.2 “job_deadline”(截止时间)

data['job_deadline'].sample(5)
data_clean['job_deadline'] = pd.to_datetime(data['job_deadline'])

3.3.3 “released_time”(发布时间)

data['released_time'].sample(5)
data_clean['released_time'] = data['released_time'].str.extract('[0-9-]+(\w+)前', expand=False).map({'分钟':'newest', '小时':'newest', '天':'new', '周':'acceptable', '月':'old'})
data_clean['released_time'].sample(5)

3.3.4 “update_time”(更新时间)

data['update_time'].sample(5)
data_clean['update_time'] = pd.to_datetime(data['update_time'])

3.4 字符型数据处理
3.4.1 “city”(城市)处理

data['city'].unique()
data_clean.loc[data_clean['city'] == '成都市', 'city'] = '成都'
data_clean.loc[data_clean['city'].isin(['珠海市', '珠海 深圳', '珠海']), 'city'] = '珠海'
data_clean.loc[data_clean['city'] == '上海漕河泾开发区', 'city'] = '上海'
#招聘实习生前10的城市
data_clean['city'].value_counts().nlargest(10)
data_clean['city'].value_counts().nlargest(10).plot(kind = 'bar')

3.4.2 “com_class”(公司和企业类型)处理

list(data['com_class'].unique())
def get_com_type(string):if string == None:return np.nanelif ('非上市' in string) or ('未上市' in string):return '股份有限公司(未上市)'elif '股份' in string:return '股份有限公司(上市)'elif '责任' in string:return '有限责任公司'elif '外商投资' in string:return '外商投资公司'elif '有限合伙' in string:return '有限合伙企业'elif '全民所有' in string:return '国有企业'else:return np.nan
com_class = data['com_class'].str.split(':', expand = True)
com_class['com_class'] = com_class[1].apply(get_com_type)
com_class.sample(5)
data_clean['com_class'] = com_class['com_class']

3.4.3 “com_logo”(公司logo)、“industry”(行业)也暂时不处理

data_clean = data_clean.reindex(columns=['com_fullname', 'com_name', 'job_academic', 'job_links', 'tag','auth_capital', 'day_per_week', 'num_employee', 'time_span','average_wage', 'est_date', 'job_deadline', 'released_time','update_time', 'city', 'com_class', 'com_intro', 'job_title','com_logo', 'industry'])
data_clean.to_csv('data_clean.csv', index = False)

4. 数据分析
4.1 数据基本情况

data_clean.sample(3)
data_clean.info()

4.2 城市与职位数量

city = data_clean['city'].value_counts()
city[:15]
bar = pyecharts.Bar('城市与职位数量')
bar.add('', city[:15].index, city[:15].values, mark_point=["max"])
bar
city_pct = (city/city.sum()).map(lambda x: '{:,.2%}'.format(x))
city_pct[:15]
(city/city.sum())[:5].sum()
data_clean.loc[data_clean['city'] == '杭州', 'com_name'].value_counts()[:5]
def topN(dataframe, n=5):counts = dataframe.value_counts()return counts[:n]
data_clean.groupby('city').com_name.apply(topN).loc[list(city_pct[:15].index)]

4.3 薪资
4.3.1 平均薪资

data_clean['salary'] = data_clean['average_wage'] * data_clean['day_per_week'] * 4
data_clean['salary'].mean()

4.3.2 薪资与城市

salary_by_city = data_clean.groupby('city')['salary'].mean()
salary_by_city.nlargest(10)
top10_city = salary_by_city[city_pct.index[:10]].sort_values(ascending=False)
top10_city
bar = pyecharts.Bar('北上广深杭等城市平均实习工资')
bar.add('', top10_city.index, np.round(top10_city.values, 0), mark_point=["max"], is_convert=True)
bar
top10_city_box = data_clean.loc[data_clean['city'].isin(top10_city.index),:]
sns.violinplot(x ='salary', y ='city', data = top10_city_box)

4.4 学历
4.4.1 数据挖掘、机器学习算法的学历要求

job_academic = data_clean['job_academic'].value_counts()
job_academic
pie = pyecharts.Pie("学历要求")
pie.add('', job_academic.index, job_academic.values)
pie

4.4.2 学历与薪资

data_clean.groupby(['job_academic'])['salary'].mean().sort_values()
sns.boxplot(x="job_academic", y="salary", data=data_clean)

4.5 行业

data_clean['industry'].sample(5)
industry = data_clean.industry.str.split('/|,|,', expand = True)
industry_top15 = industry.apply(pd.value_counts).sum(axis = 1).nlargest(15)
bar = pyecharts.Bar('行业与职位数量')
bar.add('', industry_top15.index, industry_top15.values, mark_point=["max","min","average"], xaxis_rotate=45)
bar

4.6 公司
4.6.1 公司与职位数量、平均实习月薪

data_clean.groupby('com_name').salary.agg(['count', 'mean']).sort_values(by='count', ascending = False)[:15]

4.6.2 公司规模与职位数量

data_clean['num_employee'].value_counts()

4.6.3 公司规模与实习月薪

data_clean.groupby('num_employee')['salary'].mean()

4.6.4 公司实习期长度

data_clean['time_span'].value_counts()
data_clean['time_span'].mean()

4.6.5 企业成立时间

est_date = data_clean.drop_duplicates(subset='com_name')
import warnings
warnings.filterwarnings('ignore')
est_date['est_year'] = pd.DatetimeIndex(est_date['est_date']).year
num_com_by_year = est_date.groupby('est_year')['com_name'].count()
line = pyecharts.Line("每年新成立的公司数量变化")
line.add("", num_com_by_year.index, num_com_by_year.values, mark_line=["max", "average"])
line
scale_VS_year = est_date.groupby(['num_employee', 'est_year'])['com_name'].count()
scale_VS_year_s = scale_VS_year['小型企业'].reindex(num_com_by_year.index, fill_value=0)
scale_VS_year_m = scale_VS_year['中型企业'].reindex(num_com_by_year.index, fill_value=0)
scale_VS_year_l = scale_VS_year['大型企业'].reindex(num_com_by_year.index, fill_value=0)line = pyecharts.Line("新成立的企业与规模")
line.add("小型企业", scale_VS_year_s.index, scale_VS_year_s.values, is_label_show=True)
line.add("中型企业", scale_VS_year_m.index, scale_VS_year_m.values, is_label_show=True)
line.add("大型企业", scale_VS_year_l.index, scale_VS_year_l.values, is_label_show=True)
line

5. 给小E挑选实习公司

E_data = data_clean.loc[(data_clean['city'] == '深圳') & (data_clean['job_academic'] != '博士') & (data_clean['time_span'].isin([1,2,3])) & (data_clean['salary'] > 3784) & (data_clean['released_time'] == 'newest'), :]
E_data['com_name'].unique()
data.loc[E_data.index, ['job_title', 'job_links']]

6. logo拼图

import os
import requests
from PIL import Imagedata_logo = data_clean[['com_logo', 'com_name']]
data_logo.drop_duplicates(subset='com_name', inplace=True)
data_logo.dropna(inplace=True)
data_logo['com_name'] = data_logo['com_name'].str.replace('/', '-')
com_logo = list(data_logo['com_logo'])
com_name = list(data_logo['com_name'])path_list = []
num_logo = 0
#####注意:先在左边文件树创建文件夹
for logo_index in range(len(com_logo)):try:response = requests.get(com_logo[logo_index])suffix = com_logo[logo_index].split('.')[-1]path = 'logo/{}.{}'.format(com_name[logo_index], suffix)##logo 文件logo的路径path_list.append(path)with open(path, 'wb') as f:f.write(response.content)num_logo += 1except:print('Failed downloading logo of', com_name[logo_index])
print('Successfully downloaded ', str(num_logo), 'logos!')
x = y = 0
line = 20
NewImage = Image.new('RGB', (128*line, 128*line))
for item in path_list:try:img = Image.open(item)img = img.resize((128, 128), Image.ANTIALIAS)NewImage.paste(img, (x * 128, y * 128))x += 1except IOError:print("第%d行,%d列文件读取失败!IOError:%s" % (y, x, item))x -= 1if x == line:x = 0y += 1if (x + line * y) == line * line:break
##注:先在左侧文件上传一jpg(建议纯白)
NewImage.save("test.JPG")  ##test.JPG是自己创建图片的路径
##显示生成的logo拼图
import matplotlib.image as mpimg # mpimg 用于读取图片lena = mpimg.imread('test.JPG') # 读取和代码处于同一目录下的 lena.png
# 此时 lena 就已经是一个 np.array 了,可以对它进行任意处理
lena.shape #(512, 512, 3)plt.imshow(lena) # 显示图片
plt.axis('off') # 不显示坐标轴
plt.show()

相关文章:

实习僧网站的实习岗位信息分析

目录 背景描述数据说明数据集来源问题描述分析目标以及导入模块1. 数据导入2. 数据基本信息和基本处理3. 数据处理3.1 新建data_clean数据框3.2 数值型数据处理3.2.1 “auth_capital”(注册资本)3.2.2 “day_per_week”(每周工作天数&#xf…...

C语言中局部变量和全局变量是否可以重名?为什么?

可以重名 在C语言中, 局部变量指的是定义在函数内的变量, 全局变量指的是定义在函数外的变量 他们在程序中的使用方法是不同的, 当重名时, 局部变量在其所在的作用域内具有更高的优先级, 会覆盖或者说隐藏同名的全局变量 具体来说: 局部变量的生命周期只在函数内部,如果出了…...

小程序中配置scss

找到:project.config.json 文件 setting 模块下添加: "useCompilerPlugins": ["sass","其他的样式类型"] 配置完成后,重启开发工具,并新建文件 结果:...

ZYNQ-Vitis(SDK)裸机开发之(四)PS端MIO和EMIO的使用

目录 一、ZYNQ中MIO和EMIO简介 二、Vivado中搭建block design 1.配置PS端MIO: 2.配置PS端EMIO: 三、Vitis中新建工程进行GPIO控制 1. GPIO操作头文件gpio_hdl.h: 2.GPIO操作源文件gpio_hdl.c: 3.main函数进行调用 例程开发…...

聊聊jvm中内存模型的坑

jvm线程的内存模型 看图,简单来说线程中操作的变量是副本。在并发情况下,如果数据发生变更,副本的数据就变为脏数据。这个时候就会有并发问题。 参考:https://www.cnblogs.com/yeyang/p/12580682.html 怎么解决并发问题 解决的…...

DevOps已死?2024年的DevOps将如何发展

随着我们进入2024年,DevOps也发生了变化。新兴的技术、变化的需求和发展的方法正在重新定义有效实施DevOps实践。 IDC预测显示,未来五年,支持DevOps实践的产品市场继续保持健康且快速增长,2022年-2027年的复合年增长率&#xff0…...

appium控制手机一直从下往上滑动

用于使用Appium和Selenium WebDriver在Android设备上滚动设置应用程序的界面。具体来说,它通过WebDriverWait和expected_conditions等待元素出现,然后使用ActionChains移动到该元素并执行滚动动作。在setUp中,它初始化了Appium的WebDriver和c…...

为什么光伏探勘测绘需要无人机?

随着全球对可再生能源需求的不断增长,光伏产业也迎来了快速发展的机遇。光伏电站作为太阳能发电的主要形式之一,其建设前期的探勘测绘工作至关重要。在这一过程中,无人机技术的应用正逐渐展现出其独特的优势。那么,为什么光伏探勘…...

day10 | 栈与队列 part-2 (Go) | 20 有效的括号、1047 删除字符串中的所有相邻重复项、150 逆波兰表达式求值

今日任务 20 有效的括号 (题目: . - 力扣(LeetCode))1047 删除字符串中的所有相邻重复项 (题目: . - 力扣(LeetCode))150 逆波兰表达式求值 (题目: . - 力扣(LeetCode)) 20 有效的括号 题目: . - 力扣&…...

深入解析Tomcat的工作流程

tomcat解析 Tomcat是一个广泛使用的开源Servlet容器,用于托管Java Web应用程序。理解Tomcat的工作流程对于开发人员和系统管理员来说是非常重要的。本文将深入探讨Tomcat的工作原理,包括请求处理、线程池管理、类加载、以及与Web服务器之间的通信。 ###…...

【web网页制作】html+css旅游家乡山西主题网页制作(3页面)【附源码】

山西旅游网页目录 涉及知识写在前面一、网页主题二、网页效果Page1、景点介绍Page2、酒店精选|出行攻略Page3、景色欣赏 三、网页架构与技术3.1 脑海构思3.2 整体布局3.3 技术说明书 四、网页源码4.1 主页模块源码4.2 源码获取方式 作者寄语 涉及知识 山西旅游主题网页制作&am…...

系统参数指标:QPS、TPS、PV、UV等

QPS QPS:Queries Per Second 是每秒查询率,是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准,即每秒的响应请求数,也即是最大吞吐能力。 TPS TPS:Tra…...

一入鸿蒙深似海,从此Spring是路人:鸿蒙开发面试题

详细内容请参考最新的官方鸿蒙文档,不保证时效性 写得不对的地方请多多指点,本文仅代表个人所学知识范围 联系方式QQ 1219723557,可一同交流学习 欢迎补充,希望能做一个汇总版本出来 1. 网络编程基本知识(较为简单&…...

【Python】使用OPC UA创建数据服务器

目录 准备工作服务器设置创建或获取节点设置节点值启动服务器查看服务器客户端总结 在工业自动化和物联网(IoT)领域,OPC UA(开放平台通信统一架构)已经成为一种广泛采用的数据交换标准。它提供了一种安全、可靠且独立于…...

JavaScript(六)-高级篇

文章目录 作用域局部作用域全局作用域作用域链JS垃圾回收机制闭包变量提升 函数进阶函数提升函数参数动态参数多余参数 箭头函数 解构赋值数组解构对象解构 遍历数组forEach方法(重点)构造函数深入对象创建对象的三种方式构造函数实例成员 & 静态成员…...

速盾:游戏cdn什么意思

CDN(Content Delivery Network)是指内容分发网络,它是由一组位于世界各地的服务器组成的网络,用于将内容有效地传输给用户。游戏CDN,顾名思义,就是用于游戏内容分发的网络。 在传统的网络传输模式中&#…...

数据库-Redis(11)

目录 51.什么是Redis事务? 52.Redis事务相关命令? 53.Redis事务的三个阶段?...

【网安小白成长之路】6.pikachu、sql-labs、upload-labs靶场搭建

🐮博主syst1m 带你 acquire knowledge! ✨博客首页——syst1m的博客💘 🔞 《网安小白成长之路(我要变成大佬😎!!)》真实小白学习历程,手把手带你一起从入门到入狱🚭 &…...

(七)C++自制植物大战僵尸游戏关卡数据加载代码讲解

植物大战僵尸游戏开发教程专栏地址http://t.csdnimg.cn/xjvbb 打开LevelData.h和LevelData.cpp文件。文件位置如下图所示。 LevelData.h 此头文件中定义了两个类,分别是OpenLevelData、LevelData,其中OpenLevelData用于加载文件数据。LevelData解析数据…...

wpf下RTSP|RTMP播放器两种渲染模式实现

技术背景 在这篇blog之前,我提到了wpf下播放RTMP和RTSP渲染的两种方式,一种是通过控件模式,另外一种是直接原生RTSP、RTMP播放模块,回调rgb,然后在wpf下渲染,本文就两种方式做个说明。 技术实现 以大牛直…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

数据链路层的主要功能是什么

数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...

Django RBAC项目后端实战 - 03 DRF权限控制实现

项目背景 在上一篇文章中,我们完成了JWT认证系统的集成。本篇文章将实现基于Redis的RBAC权限控制系统,为系统提供细粒度的权限控制。 开发目标 实现基于Redis的权限缓存机制开发DRF权限控制类实现权限管理API配置权限白名单 前置配置 在开始开发权限…...

从数据报表到决策大脑:AI重构电商决策链条

在传统电商运营中,决策链条往往止步于“数据报表层”:BI工具整合历史数据,生成滞后一周甚至更久的销售分析,运营团队凭经验预判需求。当爆款突然断货、促销库存积压时,企业才惊觉标准化BI的决策时差正成为增长瓶颈。 一…...