Spring-AI-上下文记忆
-
引入依赖
pom文件<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>3.2.4</version><relativePath/> <!-- lookup parent from repository --></parent><!-- Generated by https://start.springboot.io --><!-- 优质的 spring/boot/data/security/cloud 框架中文文档尽在 => https://springdoc.cn --><groupId>com.example</groupId><artifactId>spring-ai-demo</artifactId><version>0.0.1-SNAPSHOT</version><name>spring-ai-demo</name><description>spring-ai-demo</description><properties><java.version>17</java.version><spring-ai.version>0.8.1</spring-ai.version></properties><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-openai-spring-boot-starter</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency></dependencies><dependencyManagement><dependencies><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-bom</artifactId><version>${spring-ai.version}</version><type>pom</type><scope>import</scope></dependency></dependencies></dependencyManagement><build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId></plugin></plugins></build><repositories><repository><id>spring-milestones</id><name>Spring Milestones</name><url>https://repo.spring.io/milestone</url><snapshots><enabled>false</enabled></snapshots></repository></repositories></project> -
配置yml
spring:ai:openai:api-key: #没有账号,可以在淘宝,2元购买keybase-url: # 淘宝上会给你中转的urlretry:max-attempts: 3 -
Controller
@RestController public class IndexController {// key:sessionId value:会话聊天的上下文private static final Map<String, List<Message>> messageMap = new HashMap<>();@Resourceprivate OpenAiChatClient chatClient;@GetMappingpublic String index(HttpSession session, @RequestParam(name = "message", defaultValue = "使用Java,写一个冒泡算法") String message) {// 检查是否已有会话List<Message> messageList = messageMap.get(session.getId());if (messageList == null) {messageList = new ArrayList<>();messageMap.put(session.getId(), messageList);}// 将用户消息,加入上下文messageList.add(messageList.size(), new UserMessage(message));// 发送消息时,传递的是上下文的所有信息,不单单是你当前发送的一条消息// 所有最好为list设置容量的限制,不然你的api-key的资源会消耗很快String result = chatClient.call(new Prompt(messageList)).getResult().getOutput().getContent();// 将ai消息,加入上下文messageList.add(messageList.size(), new AssistantMessage(result));return result;} }优化代码:(可以使用redis来代替 存储messageMap)
OpenAiService.java/*** 记录上下文聊天信息*/ @Service public class OpenAiService {private static final Map<String, LinkedList<Message>> messageMap = new HashMap<>();@Resourceprivate OpenAiChatClient chatClient;private void addUserMessage(LinkedList<Message> messageList, String message) {checkMessageCapacity(messageList);messageList.addLast(new UserMessage(message));}private void addAssistantMessage(LinkedList<Message> messageList, String message) {checkMessageCapacity(messageList);messageList.add(messageList.size(), new AssistantMessage(message));}public String chat(String sessionId, String message) {LinkedList<Message> messageList = messageMap.get(sessionId);if (messageList == null) {messageList = new LinkedList<>();messageMap.put(sessionId, messageList);}addUserMessage(messageList, message);String result = chatClient.call(new Prompt(messageList)).getResult().getOutput().getContent();addAssistantMessage(messageList, result);return result;}public void checkMessageCapacity(LinkedList<Message> messages) {if (messages.size() >= 10) {messages.removeFirst();}} }IndexController.java
@RestController public class IndexController {@Resourceprivate OpenAiService openAiService;@GetMappingpublic String index(HttpSession session, @RequestParam(name = "message", defaultValue = "使用Java,写一个冒泡算法") String message) {String result = "";synchronized (session.getId().intern()) {result = openAiService.chat(session.getId(), message);}return result;} }
相关文章:
Spring-AI-上下文记忆
引入依赖 pom文件 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/P…...
内存函数memcpy、mommove、memset、memcmp
目录 1、memcpy函数 memcpy函数的模拟实现 2、memmove函数 memmove函数的模拟实现 3、memset函数 4、memcmp函数 1、memcpy函数 描述: C 库函数 void *memcpy(void *str1, const void *str2, size_t n) 从存储区 str2 复制 n 个字节到存储区 str1。 声明&…...
symfony框架介绍
Symfony是一个功能强大的PHP框架,它提供了丰富的组件和工具来简化Web开发过程。以下是一些关于Symfony的主要特点: 可重用性: Symfony提供了一系列可重用的PHP组件,这些组件可以用于任何PHP应用程序中。灵活性: Symfony允许开发者根据项目需求灵活选择使用哪些组件,而不是强…...
【计算机毕业设计】游戏售卖网站——后附源码
🎉**欢迎来到琛哥的技术世界!**🎉 📘 博主小档案: 琛哥,一名来自世界500强的资深程序猿,毕业于国内知名985高校。 🔧 技术专长: 琛哥在深度学习任务中展现出卓越的能力&a…...
LabVIEW电信号傅里叶分解合成实验
LabVIEW电信号傅里叶分解合成实验 电信号的分析与处理在科研和工业领域中起着越来越重要的作用。系统以LabVIEW软件为基础,开发了一个集电信号的傅里叶分解、合成、频率响应及频谱分析功能于一体的虚拟仿真实验系统。系统不仅能够模拟实际电路实验箱的全部功能&…...
Docker 学习笔记(六):挑战容器数据卷技术一文通,实战多个 MySQL 数据同步,能懂会用,初学必备
一、前言 记录时间 [2024-4-11] 系列文章简摘: Docker学习笔记(二):在Linux中部署Docker(Centos7下安装docker、环境配置,以及镜像简单使用) Docker 学习笔记(三)&#x…...
csdn怎么变得这么恶心,自动把一些好的文章分享改成了vip可见
刚刚发现以前发的一些文章未经过我同意,被csdn自动改成了VIP可见,这也太恶心了,第一你没分钱给我,第二我记录下一些问题也不是为了赚钱,而是为了提升自己和帮助别人,这样搞是想逼更多人走是吗?...
自然语言处理NLP:文本预处理Text Pre-Processing
大家好,自然语言处理(NLP)是计算机科学领域与人工智能领域中的一个重要方向,其研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。本文将介绍文本预处理的本质、原理、应用等内容,助力自然语言处理和模型的生成使用。 1.文本…...
家庭网络防御系统搭建-虚拟机安装siem/securityonion网络连接问题汇总
由于我是在虚拟机中安装的security onion,在此过程中,遇到很多的网络访问不通的问题,通过该文章把网络连接问题做一下梳理。如果直接把securityonion 安装在物理机上,网络问题则会少很多。 NAT无法访问虚拟机 security onion虚拟…...
2024年外贸行业营销神器推荐
2024年外贸行业营销神器推荐:外贸人每天面对的不是国内客户,而是全球客户,相对于国内来说,会更加麻烦和繁琐,今天就码一篇2024年外贸行业营销神器的推荐文章,希望可以减轻各位外贸人的负担! 1、…...
k8s高可用集群部署介绍 -- 理论
部署官网参考文档 负载均衡参考 官网两种部署模式拓扑图和介绍 介绍两种高可用模式 堆叠 拓扑图如下(图片来自k8s官网): 特点:将etcd数据库作为控制平台的一员,由于etcd的共识算法,所以集群最少为3个&…...
【GDAL-Python】1-在Python中使用GDAL读写栅格文件
文章目录 1-概要2.代码实现 1-概要 提示:本教程介绍如何使用 Python 中的 GDAL 库将栅格数据读取为数组并将数组另存为GeoTiff 文件 视频地址:B站对应教程 目标: (1)读写GeoTiff影像; (2&…...
【C++】explicit关键字详解(explicit关键字是什么? 为什么需要explicit关键字? 如何使用explicit 关键字)
目录 一、前言 二、explicit关键字是什么? 三、构造函数还具有类型转换的作用 🍎单参构造函数 ✨引出 explicit 关键字 🍍多参构造函数 ✨为什么需要explicit关键字? ✨怎么使用explicit关键字? 四、总结 五…...
maven引入外部jar包
将jar包放入文件夹lib包中 pom文件 <dependency><groupId>com.jyx</groupId><artifactId>Spring-xxl</artifactId><version>1.0-SNAPSHOT</version><scope>system</scope><systemPath>${project.basedir}/lib/Spr…...
李沐37_微调——自学笔记
标注数据集很贵 网络架构 1.一般神经网络分为两块,一是特征抽取原始像素变成容易线性分割的特征,二是线性分类器来做分类 微调 1.原数据集不能直接使用,因为标号发生改变,通过微调可以仍然对我数据集做特征提取 2.pre-train源…...
【小程序】生成短信中可点击的链接
文章目录 前言一、如何生成链接二、仔细拜读小程序开发文档文档说明1文档说明2 总结 前言 由于线上运营需求,需要给用户发送炮轰短信,用户通过短信点击链接直接跳转进入小程序 一、如何生成链接 先是找了一些三方的,生成的倒是快速…...
欧拉函数(模板题)
给定 n 个正整数 ai,请你求出每个数的欧拉函数。 欧拉函数的定义 输入格式 第一行包含整数 n。 接下来 n 行,每行包含一个正整数 ai。 输出格式 输出共 n 行,每行输出一个正整数 ai 的欧拉函数。 数据范围 1≤n≤100, 1≤ai≤2109 输…...
Thingsboard PE 白标的使用
只有专业版支持白标功能。 使用 ThingsBoard Cloud 或安装您自己的平台实例。 一、介绍 ThingsBoard Web 界面提供了简便的操作,让您能够轻松配置您的公司或产品标识和配色方案,无需进行编码工作或重新启动服务。 系统管理员、租户和客户管理员可以根据需要自定义配色方案、…...
智能物联网远传冷水表管理系统
智能物联网远传冷水表管理系统是一种基于物联网技术的先进系统,旨在实现对冷水表的远程监测、数据传输和智能化管理。本文将从系统特点、构成以及带来的效益三个方面展开介绍。 系统特点 1.远程监测:系统可以实现对冷水表数据的远程监测,无…...
Qt教程3-Ubuntu(x86_64)上配置arm64(aarch64)交叉编译环境及QT编译arm64架构工程
汇创慧玩 写在前面1. 查看系统架构相关指令2. ARM64交叉编译器环境搭建3. Qt编译arm64环境搭建4. 配置 Qt的本地aarch64交叉编译器5. 工程建立及编译验证 写在前面 苦辣酸甜时光八载,春夏秋冬志此一生 Qt简介: Qt(官方发音 [kju:t]ÿ…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
