【多模态检索】Coarse-to-Fine Visual Representation
快手文本视频多模态检索论文
论文:Towards Efficient and Effective Text-to-Video Retrieval with Coarse-to-Fine Visual Representation Learning
链接:https://arxiv.org/abs/2401.00701
摘要
近些年,基于CLIP的text-to-video检索方法广为流行,但大多从视觉文本对齐方法上演进。按照原文:design a heavy fusion block for sentence (words)-video (frames) interaction,而忽视了复杂度和检索效率。
- 升级点
- 本文采用多粒度视觉特征学习,捕获从抽象到具体的视觉内容。Multi-granularity visual feature learning, ensuring the model’s comprehensiveness in capturing visual content features spanning from abstract to detailed levels during the training phase.
- 设计两阶段检索框架,优点在于 balances the coarse and fine granularity of retrieval content.
- 在训练阶段,设计一个parameter-free text-gated interaction block (TIB) 模块用于细粒度视觉表征学习并嵌入一个额外的 Pearson Constraint来优化跨模态表示学习。
- 在检索阶段,使用粗粒度视觉表征快速检索topk结果,然后使用细粒度视觉表示rerank(recall-then-rerank pipeline)。
- 效果:nearly 50 times faster
- 难点:对比原始图像文本匹配任务(包含较少的视觉信息),聚合整个视频表示易导致过度抽象以及误导。在视觉文本检索任务中,一个句子通常只描述一个感兴趣的视频子区域。现有工作很多不够合理与成熟,衍生出很多CLIP的变体,大体分为两个方向。例如CLIP4Clip,仅仅是将预训练的CLIP简单进行MeanPooling就从image-text迁移到video-text领域。
- 设计a heavy fusion block来加强视觉和文本的交互以达到模态间更好地对齐的目的;
- 优化text-driven video representations,keep multi-grained features including video-level and frame-level for brute-force search。
- 近些年方法虽然有效果提升,但却需要巨大的计算成本(text-video similarity calculation)。
过于细粒度的计算可能会放大视频局部噪声,降低检索效率。需要在有效性和效率上做trade-off。
方法
-
整体架构
-
特征输入:a video v consists ofT sequential frames {f1, f2, …, fT |fi ∈ RH ×W ×C};each frame is divided into N patches {f 1i , f 2i , …, f N i |f n i ∈RP×P×C} with P × P size;text t。
-
模型结构
-
视觉端
- a spatial encoder (SE) with 12 transformer layers initialized by the public CLIP checkpoints
- a temporal encoder (TE) with 4 transformer layers to model temporal relationship among sequential frames, [CLS] enocde patch to frame(0th patch feature represent frame)
- a MeanPooling layer (MP) to aggregate all frame-level features into a text-agnostic feature vector
注:patch 和 frame都包含位置编码
-
视觉文本交互 – Text-Gated Interaction Block
- 简单的attention机制,π is the temperature,决定多少视觉信息被保留(A small value of π only emphasizes those most relevant visual cues, while a large value pays attention to much more visual cues.)
- 未引入任何参数
-
-
损失函数(Inter- and Intra-Feature Supervision Loss)
- 数据形式:Each batch of B video-text pairs,in each pair, the text tb is a corresponding description of the video vb
- Contrastive Loss for Inter-Feature Supervision - infoNCE loss,batch内其他为负样本
- Pearson Constraint for Intra-Feature Supervision
- Total Loss
-
检索中的两阶段策略 - To balance the efficiency and effectiveness
- 使用VL1作为tok召回阶段特征
- rerank这些召回结果用VL2和VL3
- 两阶段的优点:效率提升 & 过于细粒度的特征可能会导致对局部噪声的过度关注。
实验
主实验:
其他数据集:
消融实验:
可以看到去掉帧粒度的文本交互特征指标下降明显。当去掉所有文本交互特征时,只使用视觉特征会引入很多噪声(引入喝多与文本无关的特征),mislead the matching process。
top100的下降可能是由于重新排序阶段过度关注视觉局部细节,增加 top-k 引入的噪声会对重新排序阶段造成更多的干扰
Re-ranking 消融
Intra-Feature Pearson Constraint消融
Visualization of Coarse-to-Fine Retrieval
相关文章:

【多模态检索】Coarse-to-Fine Visual Representation
快手文本视频多模态检索论文 论文:Towards Efficient and Effective Text-to-Video Retrieval with Coarse-to-Fine Visual Representation Learning 链接:https://arxiv.org/abs/2401.00701 摘要 近些年,基于CLIP的text-to-video检索方法…...

VRRP——虚拟路由冗余协议
什么是VRRP 虚拟路由冗余协议VRRP(Virtual Router Redundancy Protocol)是一种用于提高网络可靠性的容错协议。 通过VRRP,可以在主机的下一跳设备出现故障时,及时将业务切换到备份设备,从而保障网络通信的连续性和可…...

隧道应急广播应该如何搭建?
隧道应急广播系统的搭建需遵循以下关键步骤,确保在紧急情况下能够迅速、准确地传达信息,保障人员安全: 1. 需求分析与规划设计: 明确目标:确定广播系统覆盖范围(如隧道全长、出入口、避难所等关键位置&…...

OpenHarmony实战开发-Worker子线程中解压文件。
介绍 本示例介绍在Worker 子线程使用ohos.zlib 提供的zlib.decompressfile接口对沙箱目录中的压缩文件进行解压操作,解压成功后将解压路径返回主线程,获取解压文件列表。 效果图预览 使用说明 1.点击解压按钮,解压test.zip文件,…...

中国科学院大学学位论文LaTeX模版
Word排版太麻烦了,公式也不好敲,推荐用LaTeX模版,全自动 官方模版下载位置:国科大sep系统 → \rightarrow → 培养指导 → \rightarrow → 论文 → \rightarrow → 论文格式检测 → \rightarrow → 撰写模板下载百度云&#…...

秘塔和Kimi AI在资料查询和学习中的使用对比
一、引言 最近老猿在网上查资料时,基本上都使用Kimi AI进行查询,发现其查询资料后总结到位,知识点的准确度较高。今天早上收到一个消息,说新推出的秘塔AI比Kimi更新进,老猿利用在学习的《统计知识学习》简单对比试用了…...
apk反编译
APK文件可以通过多个工具反编译,以便查看包含在其中的Java源文件。但是,需要注意的是,通常通过反编译得到的不是原始的Java源代码,而是反编译后的代码,这意味着它可能已经被转换成了类似于原始Java代码的形式ÿ…...

修改百度百科的词条的方法
百度百科作为国内最大的百科全书网站之一,是广大网民获取各类知识的重要途径之一。所以,如何修改百度百科的词条成为了很多人关心的话题。本文将介绍修改百度百科的方法,并提供一些技巧和注意事项。 注册百度账号 首先,进入百度百…...

更改ip地址的几种方式有哪些
在数字化时代,IP地址作为网络设备的标识,对于我们在网络世界中的活动至关重要。然而,出于多种原因,如保护隐私、访问特定网站或进行网络测试,我们可能需要更改IP地址。虎观代理将详细介绍IP地址的更改方法与步骤&#…...

Flink学习(六)-容错处理
前言 Flink 是通过状态快照实现容错处理 一、State Backends 由 Flink 管理的 keyed state 是一种分片的键/值存储,每个 keyed state 的工作副本都保存在负责该键的 taskmanager 本地中。 一种基于 RocksDB 内嵌 key/value 存储将其工作状态保存在磁盘上&#x…...
设计模式(020)行为型之备忘录模式
备忘录模式是一种行为型设计模式,用于在不破坏封装性的前提下捕获一个对象的内部状态,并在该对象之外保存这个状态,以便之后可以将该对象恢复到之前的状态。这种模式通常用于需要记录对象状态历史、撤销操作或实现“回到过去”功能的场景。 在…...
Android 系统锁屏息屏休眠时Handler CountDownTimer计时器停止运行问题解决
1.前言 在进行app开发的过程中,在进行某些倒计时的功能项目开发中,会遇到在锁屏息屏休眠一段时间的情况下, 在唤醒屏幕的情况下发现倒计时已经停止了,这是因为在系统处于休眠的状态下cpu也停止了工作,所以 handler和countdowntimer倒计时也停止了工作,接下来就来看怎么样…...
Java中如何提取视频文件的缩略图
在Java中,可以使用FFmpeg库来提取视频文件的缩略图。以下是一种使用FFmpeg的方法来提取视频缩略图的示例代码: import java.io.File; import java.io.IOException;public class VideoThumbnailExtractor {public static void main(String[] args) {Stri…...

总结 HashTable, HashMap, ConcurrentHashMap 之间的区别
前言 HashMap 本身不是线程安全的. 在多线程环境下使用哈希表可以使用: Hashtable(不推荐使用)ConcurrentHashMap(推荐使用) HashMap HashMap数据结构 根本: 数组 链表(jdk1.7)/数组链表红黑…...

《剑指 Offer》专项突破版 - 面试题 107 : 矩阵中的距离(C++ 实现)
题目链接:矩阵中的距离 题目: 输入一个由 0、1 组成的矩阵 M,请输出一个大小相同的矩阵 D,矩阵 D 中的每个格子是矩阵 M 中对应格子离最近的 0 的距离。水平或竖直方向相邻的两个格子的距离为 1。假设矩阵 M 中至少有一个 0。 …...

揭秘智慧礼品背后的故事
如若不是从事技术行业,在罗列礼品清单时,可能不会想到 “数据”,但幸运的是,我们想到了。如何将AI技术应用到当季一些最受青睐的产品中去,训练数据是这一智能技术的背后动力。很多电子设备或名称中带有“智能”一词的设…...

NVM的安装与配置
目录 一、简介二、下载2.1、windows环境下载地址2.2、安装 三、配置3.1、查看可安装版本3.2、安装版本3.3、使用和切换版本3.4、模块配置 四、其他4.1、全局安装pnpm4.2、常用nvm命令 一、简介 NVM,全称为Node Version Manager,是一个流行的命令行工具&a…...

[Java EE] 多线程(一) :线程的创建与常用方法(上)
1. 认识线程 1.1 概念 1.1.1 什么是线程 ⼀个线程就是⼀个"执⾏流".每个线程之间都可以按照顺序执⾏⾃⼰的代码.多个线程之间"同时"执⾏ 着多份代码. 还是回到我们之前的银⾏的例⼦中。之前我们主要描述的是个⼈业务,即⼀个⼈完全处理⾃⼰的…...

Linux安装docker(含Centos系统和Ubuntu系统)
一、Centos系统 1. 卸载旧版本依赖 sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine 2. 设置仓库 安装所需的软件包。yum-utils 提供了 yum-config-manager &…...

【第十五届蓝桥杯大赛软件赛省赛】———— C/C++ 大学B组
蓝桥杯2024年15届省赛b组原题献上...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...

【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...