【多模态检索】Coarse-to-Fine Visual Representation
快手文本视频多模态检索论文
论文:Towards Efficient and Effective Text-to-Video Retrieval with Coarse-to-Fine Visual Representation Learning
链接:https://arxiv.org/abs/2401.00701
摘要
近些年,基于CLIP的text-to-video检索方法广为流行,但大多从视觉文本对齐方法上演进。按照原文:design a heavy fusion block for sentence (words)-video (frames) interaction,而忽视了复杂度和检索效率。
- 升级点
- 本文采用多粒度视觉特征学习,捕获从抽象到具体的视觉内容。Multi-granularity visual feature learning, ensuring the model’s comprehensiveness in capturing visual content features spanning from abstract to detailed levels during the training phase.
- 设计两阶段检索框架,优点在于 balances the coarse and fine granularity of retrieval content.
- 在训练阶段,设计一个parameter-free text-gated interaction block (TIB) 模块用于细粒度视觉表征学习并嵌入一个额外的 Pearson Constraint来优化跨模态表示学习。
- 在检索阶段,使用粗粒度视觉表征快速检索topk结果,然后使用细粒度视觉表示rerank(recall-then-rerank pipeline)。
- 效果:nearly 50 times faster
- 难点:对比原始图像文本匹配任务(包含较少的视觉信息),聚合整个视频表示易导致过度抽象以及误导。在视觉文本检索任务中,一个句子通常只描述一个感兴趣的视频子区域。现有工作很多不够合理与成熟,衍生出很多CLIP的变体,大体分为两个方向。例如CLIP4Clip,仅仅是将预训练的CLIP简单进行MeanPooling就从image-text迁移到video-text领域。
- 设计a heavy fusion block来加强视觉和文本的交互以达到模态间更好地对齐的目的;
- 优化text-driven video representations,keep multi-grained features including video-level and frame-level for brute-force search。
- 近些年方法虽然有效果提升,但却需要巨大的计算成本(text-video similarity calculation)。

过于细粒度的计算可能会放大视频局部噪声,降低检索效率。需要在有效性和效率上做trade-off。
方法
-
整体架构

-
特征输入:a video v consists ofT sequential frames {f1, f2, …, fT |fi ∈ RH ×W ×C};each frame is divided into N patches {f 1i , f 2i , …, f N i |f n i ∈RP×P×C} with P × P size;text t。
-
模型结构
-
视觉端
- a spatial encoder (SE) with 12 transformer layers initialized by the public CLIP checkpoints
- a temporal encoder (TE) with 4 transformer layers to model temporal relationship among sequential frames, [CLS] enocde patch to frame(0th patch feature represent frame)
- a MeanPooling layer (MP) to aggregate all frame-level features into a text-agnostic feature vector
注:patch 和 frame都包含位置编码
-
视觉文本交互 – Text-Gated Interaction Block
- 简单的attention机制,π is the temperature,决定多少视觉信息被保留(A small value of π only emphasizes those most relevant visual cues, while a large value pays attention to much more visual cues.)
- 未引入任何参数

-
-
损失函数(Inter- and Intra-Feature Supervision Loss)
- 数据形式:Each batch of B video-text pairs,in each pair, the text tb is a corresponding description of the video vb
- Contrastive Loss for Inter-Feature Supervision - infoNCE loss,batch内其他为负样本

- Pearson Constraint for Intra-Feature Supervision


- Total Loss

-
检索中的两阶段策略 - To balance the efficiency and effectiveness
- 使用VL1作为tok召回阶段特征
- rerank这些召回结果用VL2和VL3
- 两阶段的优点:效率提升 & 过于细粒度的特征可能会导致对局部噪声的过度关注。
实验
主实验:

其他数据集:

消融实验:
可以看到去掉帧粒度的文本交互特征指标下降明显。当去掉所有文本交互特征时,只使用视觉特征会引入很多噪声(引入喝多与文本无关的特征),mislead the matching process。

top100的下降可能是由于重新排序阶段过度关注视觉局部细节,增加 top-k 引入的噪声会对重新排序阶段造成更多的干扰

Re-ranking 消融

Intra-Feature Pearson Constraint消融

Visualization of Coarse-to-Fine Retrieval

相关文章:
【多模态检索】Coarse-to-Fine Visual Representation
快手文本视频多模态检索论文 论文:Towards Efficient and Effective Text-to-Video Retrieval with Coarse-to-Fine Visual Representation Learning 链接:https://arxiv.org/abs/2401.00701 摘要 近些年,基于CLIP的text-to-video检索方法…...
VRRP——虚拟路由冗余协议
什么是VRRP 虚拟路由冗余协议VRRP(Virtual Router Redundancy Protocol)是一种用于提高网络可靠性的容错协议。 通过VRRP,可以在主机的下一跳设备出现故障时,及时将业务切换到备份设备,从而保障网络通信的连续性和可…...
隧道应急广播应该如何搭建?
隧道应急广播系统的搭建需遵循以下关键步骤,确保在紧急情况下能够迅速、准确地传达信息,保障人员安全: 1. 需求分析与规划设计: 明确目标:确定广播系统覆盖范围(如隧道全长、出入口、避难所等关键位置&…...
OpenHarmony实战开发-Worker子线程中解压文件。
介绍 本示例介绍在Worker 子线程使用ohos.zlib 提供的zlib.decompressfile接口对沙箱目录中的压缩文件进行解压操作,解压成功后将解压路径返回主线程,获取解压文件列表。 效果图预览 使用说明 1.点击解压按钮,解压test.zip文件,…...
中国科学院大学学位论文LaTeX模版
Word排版太麻烦了,公式也不好敲,推荐用LaTeX模版,全自动 官方模版下载位置:国科大sep系统 → \rightarrow → 培养指导 → \rightarrow → 论文 → \rightarrow → 论文格式检测 → \rightarrow → 撰写模板下载百度云&#…...
秘塔和Kimi AI在资料查询和学习中的使用对比
一、引言 最近老猿在网上查资料时,基本上都使用Kimi AI进行查询,发现其查询资料后总结到位,知识点的准确度较高。今天早上收到一个消息,说新推出的秘塔AI比Kimi更新进,老猿利用在学习的《统计知识学习》简单对比试用了…...
apk反编译
APK文件可以通过多个工具反编译,以便查看包含在其中的Java源文件。但是,需要注意的是,通常通过反编译得到的不是原始的Java源代码,而是反编译后的代码,这意味着它可能已经被转换成了类似于原始Java代码的形式ÿ…...
修改百度百科的词条的方法
百度百科作为国内最大的百科全书网站之一,是广大网民获取各类知识的重要途径之一。所以,如何修改百度百科的词条成为了很多人关心的话题。本文将介绍修改百度百科的方法,并提供一些技巧和注意事项。 注册百度账号 首先,进入百度百…...
更改ip地址的几种方式有哪些
在数字化时代,IP地址作为网络设备的标识,对于我们在网络世界中的活动至关重要。然而,出于多种原因,如保护隐私、访问特定网站或进行网络测试,我们可能需要更改IP地址。虎观代理将详细介绍IP地址的更改方法与步骤&#…...
Flink学习(六)-容错处理
前言 Flink 是通过状态快照实现容错处理 一、State Backends 由 Flink 管理的 keyed state 是一种分片的键/值存储,每个 keyed state 的工作副本都保存在负责该键的 taskmanager 本地中。 一种基于 RocksDB 内嵌 key/value 存储将其工作状态保存在磁盘上&#x…...
设计模式(020)行为型之备忘录模式
备忘录模式是一种行为型设计模式,用于在不破坏封装性的前提下捕获一个对象的内部状态,并在该对象之外保存这个状态,以便之后可以将该对象恢复到之前的状态。这种模式通常用于需要记录对象状态历史、撤销操作或实现“回到过去”功能的场景。 在…...
Android 系统锁屏息屏休眠时Handler CountDownTimer计时器停止运行问题解决
1.前言 在进行app开发的过程中,在进行某些倒计时的功能项目开发中,会遇到在锁屏息屏休眠一段时间的情况下, 在唤醒屏幕的情况下发现倒计时已经停止了,这是因为在系统处于休眠的状态下cpu也停止了工作,所以 handler和countdowntimer倒计时也停止了工作,接下来就来看怎么样…...
Java中如何提取视频文件的缩略图
在Java中,可以使用FFmpeg库来提取视频文件的缩略图。以下是一种使用FFmpeg的方法来提取视频缩略图的示例代码: import java.io.File; import java.io.IOException;public class VideoThumbnailExtractor {public static void main(String[] args) {Stri…...
总结 HashTable, HashMap, ConcurrentHashMap 之间的区别
前言 HashMap 本身不是线程安全的. 在多线程环境下使用哈希表可以使用: Hashtable(不推荐使用)ConcurrentHashMap(推荐使用) HashMap HashMap数据结构 根本: 数组 链表(jdk1.7)/数组链表红黑…...
《剑指 Offer》专项突破版 - 面试题 107 : 矩阵中的距离(C++ 实现)
题目链接:矩阵中的距离 题目: 输入一个由 0、1 组成的矩阵 M,请输出一个大小相同的矩阵 D,矩阵 D 中的每个格子是矩阵 M 中对应格子离最近的 0 的距离。水平或竖直方向相邻的两个格子的距离为 1。假设矩阵 M 中至少有一个 0。 …...
揭秘智慧礼品背后的故事
如若不是从事技术行业,在罗列礼品清单时,可能不会想到 “数据”,但幸运的是,我们想到了。如何将AI技术应用到当季一些最受青睐的产品中去,训练数据是这一智能技术的背后动力。很多电子设备或名称中带有“智能”一词的设…...
NVM的安装与配置
目录 一、简介二、下载2.1、windows环境下载地址2.2、安装 三、配置3.1、查看可安装版本3.2、安装版本3.3、使用和切换版本3.4、模块配置 四、其他4.1、全局安装pnpm4.2、常用nvm命令 一、简介 NVM,全称为Node Version Manager,是一个流行的命令行工具&a…...
[Java EE] 多线程(一) :线程的创建与常用方法(上)
1. 认识线程 1.1 概念 1.1.1 什么是线程 ⼀个线程就是⼀个"执⾏流".每个线程之间都可以按照顺序执⾏⾃⼰的代码.多个线程之间"同时"执⾏ 着多份代码. 还是回到我们之前的银⾏的例⼦中。之前我们主要描述的是个⼈业务,即⼀个⼈完全处理⾃⼰的…...
Linux安装docker(含Centos系统和Ubuntu系统)
一、Centos系统 1. 卸载旧版本依赖 sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine 2. 设置仓库 安装所需的软件包。yum-utils 提供了 yum-config-manager &…...
【第十五届蓝桥杯大赛软件赛省赛】———— C/C++ 大学B组
蓝桥杯2024年15届省赛b组原题献上...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
