当前位置: 首页 > news >正文

【多模态检索】Coarse-to-Fine Visual Representation

快手文本视频多模态检索论文

论文:Towards Efficient and Effective Text-to-Video Retrieval with Coarse-to-Fine Visual Representation Learning
链接:https://arxiv.org/abs/2401.00701

摘要

近些年,基于CLIP的text-to-video检索方法广为流行,但大多从视觉文本对齐方法上演进。按照原文:design a heavy fusion block for sentence (words)-video (frames) interaction,而忽视了复杂度和检索效率。

  • 升级点
  • 本文采用多粒度视觉特征学习,捕获从抽象到具体的视觉内容。Multi-granularity visual feature learning, ensuring the model’s comprehensiveness in capturing visual content features spanning from abstract to detailed levels during the training phase.
  • 设计两阶段检索框架,优点在于 balances the coarse and fine granularity of retrieval content.
    • 在训练阶段,设计一个parameter-free text-gated interaction block (TIB) 模块用于细粒度视觉表征学习并嵌入一个额外的 Pearson Constraint来优化跨模态表示学习。
    • 在检索阶段,使用粗粒度视觉表征快速检索topk结果,然后使用细粒度视觉表示rerank(recall-then-rerank pipeline)。
  • 效果:nearly 50 times faster
  • 难点:对比原始图像文本匹配任务(包含较少的视觉信息),聚合整个视频表示易导致过度抽象以及误导。在视觉文本检索任务中,一个句子通常只描述一个感兴趣的视频子区域。现有工作很多不够合理与成熟,衍生出很多CLIP的变体,大体分为两个方向。例如CLIP4Clip,仅仅是将预训练的CLIP简单进行MeanPooling就从image-text迁移到video-text领域。
    • 设计a heavy fusion block来加强视觉和文本的交互以达到模态间更好地对齐的目的;
    • 优化text-driven video representations,keep multi-grained features including video-level and frame-level for brute-force search。
  • 近些年方法虽然有效果提升,但却需要巨大的计算成本(text-video similarity calculation)。
    在这里插入图片描述
    过于细粒度的计算可能会放大视频局部噪声,降低检索效率。需要在有效性和效率上做trade-off。

方法

  • 整体架构
    在这里插入图片描述

  • 特征输入:a video v consists ofT sequential frames {f1, f2, …, fT |fi ∈ RH ×W ×C};each frame is divided into N patches {f 1i , f 2i , …, f N i |f n i ∈RP×P×C} with P × P size;text t。

  • 模型结构

    • 视觉端

      • a spatial encoder (SE) with 12 transformer layers initialized by the public CLIP checkpoints
      • a temporal encoder (TE) with 4 transformer layers to model temporal relationship among sequential frames, [CLS] enocde patch to frame(0th patch feature represent frame)
      • a MeanPooling layer (MP) to aggregate all frame-level features into a text-agnostic feature vector
        注:patch 和 frame都包含位置编码在这里插入图片描述
    • 视觉文本交互 – Text-Gated Interaction Block

      • 简单的attention机制,π is the temperature,决定多少视觉信息被保留(A small value of π only emphasizes those most relevant visual cues, while a large value pays attention to much more visual cues.)
      • 未引入任何参数
        在这里插入图片描述
  • 损失函数(Inter- and Intra-Feature Supervision Loss)

    • 数据形式:Each batch of B video-text pairs,in each pair, the text tb is a corresponding description of the video vb
    • Contrastive Loss for Inter-Feature Supervision - infoNCE loss,batch内其他为负样本
      在这里插入图片描述
    • Pearson Constraint for Intra-Feature Supervision
      在这里插入图片描述
      在这里插入图片描述
    • Total Loss
      在这里插入图片描述
  • 检索中的两阶段策略 - To balance the efficiency and effectiveness

    • 使用VL1作为tok召回阶段特征
    • rerank这些召回结果用VL2和VL3
    • 两阶段的优点:效率提升 & 过于细粒度的特征可能会导致对局部噪声的过度关注。

实验

主实验:
在这里插入图片描述

其他数据集:
在这里插入图片描述
消融实验:
可以看到去掉帧粒度的文本交互特征指标下降明显。当去掉所有文本交互特征时,只使用视觉特征会引入很多噪声(引入喝多与文本无关的特征),mislead the matching process。
在这里插入图片描述
top100的下降可能是由于重新排序阶段过度关注视觉局部细节,增加 top-k 引入的噪声会对重新排序阶段造成更多的干扰
在这里插入图片描述
Re-ranking 消融
在这里插入图片描述
Intra-Feature Pearson Constraint消融
在这里插入图片描述
Visualization of Coarse-to-Fine Retrieval
在这里插入图片描述

相关文章:

【多模态检索】Coarse-to-Fine Visual Representation

快手文本视频多模态检索论文 论文:Towards Efficient and Effective Text-to-Video Retrieval with Coarse-to-Fine Visual Representation Learning 链接:https://arxiv.org/abs/2401.00701 摘要 近些年,基于CLIP的text-to-video检索方法…...

VRRP——虚拟路由冗余协议

什么是VRRP 虚拟路由冗余协议VRRP(Virtual Router Redundancy Protocol)是一种用于提高网络可靠性的容错协议。 通过VRRP,可以在主机的下一跳设备出现故障时,及时将业务切换到备份设备,从而保障网络通信的连续性和可…...

隧道应急广播应该如何搭建?

隧道应急广播系统的搭建需遵循以下关键步骤,确保在紧急情况下能够迅速、准确地传达信息,保障人员安全: 1. 需求分析与规划设计: 明确目标:确定广播系统覆盖范围(如隧道全长、出入口、避难所等关键位置&…...

OpenHarmony实战开发-Worker子线程中解压文件。

介绍 本示例介绍在Worker 子线程使用ohos.zlib 提供的zlib.decompressfile接口对沙箱目录中的压缩文件进行解压操作,解压成功后将解压路径返回主线程,获取解压文件列表。 效果图预览 使用说明 1.点击解压按钮,解压test.zip文件&#xff0c…...

中国科学院大学学位论文LaTeX模版

Word排版太麻烦了,公式也不好敲,推荐用LaTeX模版,全自动 官方模版下载位置:国科大sep系统 → \rightarrow → 培养指导 → \rightarrow → 论文 → \rightarrow → 论文格式检测 → \rightarrow → 撰写模板下载百度云&#…...

秘塔和Kimi AI在资料查询和学习中的使用对比

一、引言 最近老猿在网上查资料时,基本上都使用Kimi AI进行查询,发现其查询资料后总结到位,知识点的准确度较高。今天早上收到一个消息,说新推出的秘塔AI比Kimi更新进,老猿利用在学习的《统计知识学习》简单对比试用了…...

apk反编译

APK文件可以通过多个工具反编译,以便查看包含在其中的Java源文件。但是,需要注意的是,通常通过反编译得到的不是原始的Java源代码,而是反编译后的代码,这意味着它可能已经被转换成了类似于原始Java代码的形式&#xff…...

修改百度百科的词条的方法

百度百科作为国内最大的百科全书网站之一,是广大网民获取各类知识的重要途径之一。所以,如何修改百度百科的词条成为了很多人关心的话题。本文将介绍修改百度百科的方法,并提供一些技巧和注意事项。 注册百度账号 首先,进入百度百…...

更改ip地址的几种方式有哪些

在数字化时代,IP地址作为网络设备的标识,对于我们在网络世界中的活动至关重要。然而,出于多种原因,如保护隐私、访问特定网站或进行网络测试,我们可能需要更改IP地址。虎观代理将详细介绍IP地址的更改方法与步骤&#…...

Flink学习(六)-容错处理

前言 Flink 是通过状态快照实现容错处理 一、State Backends 由 Flink 管理的 keyed state 是一种分片的键/值存储,每个 keyed state 的工作副本都保存在负责该键的 taskmanager 本地中。 一种基于 RocksDB 内嵌 key/value 存储将其工作状态保存在磁盘上&#x…...

设计模式(020)行为型之备忘录模式

备忘录模式是一种行为型设计模式,用于在不破坏封装性的前提下捕获一个对象的内部状态,并在该对象之外保存这个状态,以便之后可以将该对象恢复到之前的状态。这种模式通常用于需要记录对象状态历史、撤销操作或实现“回到过去”功能的场景。 在…...

Android 系统锁屏息屏休眠时Handler CountDownTimer计时器停止运行问题解决

1.前言 在进行app开发的过程中,在进行某些倒计时的功能项目开发中,会遇到在锁屏息屏休眠一段时间的情况下, 在唤醒屏幕的情况下发现倒计时已经停止了,这是因为在系统处于休眠的状态下cpu也停止了工作,所以 handler和countdowntimer倒计时也停止了工作,接下来就来看怎么样…...

Java中如何提取视频文件的缩略图

在Java中,可以使用FFmpeg库来提取视频文件的缩略图。以下是一种使用FFmpeg的方法来提取视频缩略图的示例代码: import java.io.File; import java.io.IOException;public class VideoThumbnailExtractor {public static void main(String[] args) {Stri…...

总结 HashTable, HashMap, ConcurrentHashMap 之间的区别

前言 HashMap 本身不是线程安全的. 在多线程环境下使用哈希表可以使用: Hashtable(不推荐使用)ConcurrentHashMap(推荐使用) HashMap HashMap数据结构 根本: 数组 链表(jdk1.7)/数组链表红黑…...

《剑指 Offer》专项突破版 - 面试题 107 : 矩阵中的距离(C++ 实现)

题目链接:矩阵中的距离 题目: 输入一个由 0、1 组成的矩阵 M,请输出一个大小相同的矩阵 D,矩阵 D 中的每个格子是矩阵 M 中对应格子离最近的 0 的距离。水平或竖直方向相邻的两个格子的距离为 1。假设矩阵 M 中至少有一个 0。 …...

揭秘智慧礼品背后的故事

如若不是从事技术行业,在罗列礼品清单时,可能不会想到 “数据”,但幸运的是,我们想到了。如何将AI技术应用到当季一些最受青睐的产品中去,训练数据是这一智能技术的背后动力。很多电子设备或名称中带有“智能”一词的设…...

NVM的安装与配置

目录 一、简介二、下载2.1、windows环境下载地址2.2、安装 三、配置3.1、查看可安装版本3.2、安装版本3.3、使用和切换版本3.4、模块配置 四、其他4.1、全局安装pnpm4.2、常用nvm命令 一、简介 NVM,全称为Node Version Manager,是一个流行的命令行工具&a…...

[Java EE] 多线程(一) :线程的创建与常用方法(上)

1. 认识线程 1.1 概念 1.1.1 什么是线程 ⼀个线程就是⼀个"执⾏流".每个线程之间都可以按照顺序执⾏⾃⼰的代码.多个线程之间"同时"执⾏ 着多份代码. 还是回到我们之前的银⾏的例⼦中。之前我们主要描述的是个⼈业务,即⼀个⼈完全处理⾃⼰的…...

Linux安装docker(含Centos系统和Ubuntu系统)

一、Centos系统 1. 卸载旧版本依赖 sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine 2. 设置仓库 安装所需的软件包。yum-utils 提供了 yum-config-manager &…...

【第十五届蓝桥杯大赛软件赛省赛】———— C/C++ 大学B组

蓝桥杯2024年15届省赛b组原题献上...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

EtherNet/IP转DeviceNet协议网关详解

一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...

Vue ③-生命周期 || 脚手架

生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

Python常用模块:time、os、shutil与flask初探

一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...

stm32进入Infinite_Loop原因(因为有系统中断函数未自定义实现)

这是系统中断服务程序的默认处理汇编函数,如果我们没有定义实现某个中断函数,那么当stm32产生了该中断时,就会默认跑这里来了,所以我们打开了什么中断,一定要记得实现对应的系统中断函数,否则会进来一直循环…...