当前位置: 首页 > news >正文

使用Pandas实现股票交易数据可视化

一、折线图:展现股价走势

1.1、简单版-股价走势图

 # 简洁版import pandas as pdimport matplotlib.pyplot as plt# 读取CSV文件df = pd.read_csv('../数据集/格力电器.csv')data = df[['high', 'close']].plot()plt.show()

首先通过df[['high','close']]从df中获取最高价和收盘价这两列特征数据,其为一个DataFrame数组对象,调用该对象的plot()对象,就可以完成绘制。

plot()函数生成图形时,默认将DataFrame对象的索引传给Matplotlib绘制X轴,DataFrame对象的各列数据作为Y轴分别绘制折线等图形。使用plt.show()函数展示。

参数名称描述
x指定应用于X轴的行标签或位置,默认为None,仅对DataFrame有效
y指定应用于Y轴的行标签或位置,如果有多个,存放于list中,默认为None,仅对DataFrame有效
kindstr,指定绘制的图形类型:"line":折线图(默认)。"density":密度图。"bar":条形图。"area":面积图。"barth":横向条形图。"pie":饼图。"hist":直方图。"scatter":散点图需要指定X轴、Y轴**。"box":箱线图。"hexbin":蜂巢图,需要指定X轴、Y轴。"kde":密度图。
ax绘制图形的subplot对象,默认为当前的subplot对象
subplotsbool。是否针对不同列单独绘制子图
sharex如果ax为None,则默认为True,否则为False
shareybool。在subplots=True前提下,如果有子图,子图是否共享Y轴,默认为False
figsize元组型。(wigth,height),指定画布尺寸大小,单位为英寸
user_indexbool。是否使用索引作为X轴数据,默认为True
title标题
gridbool。是否显示网格
legendbool。是否显示网格的图例,默认为True
xticks序列。设置X轴的刻度值
yticks序列。设置Y轴的刻度值
xlim数值(最小值)、列表或元组(区间范围)。设置X轴范围
ylim数值(最小值)、列表或元组(区间范围)。设置Y轴范围
xlabel设置X轴的名称。默认使用行索引名。仅支持Pandas1.1.0及以上版本
ylabel设置Y轴的名称。仅支持Pandas1.1.0及以上版本
rotint。设置轴刻度旋转角度,默认为None
fontsizeint。设置轴刻度字体大小
colormapstring或colormap对象。设置图区域颜色
secondary_ybool或序列。是否需要在次Y轴上绘制,或者在次Y轴上绘制哪些列
stackedbool,是否创建堆积图。折线图和条形图默认为F alse,面积图默认为True

1.2、美化版-股价走势图

 import pandas as pdimport matplotlib.pyplot as plt​plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置中文格式plt.rcParams['axes.unicode_minus'] = False  # 正常显示负号​df = pd.read_csv('../数据集/格力电器.csv')data = df[['high','close']].head(22)# x轴刻度x_ticks = [i for i in range(data.shape[0])]# 美化版data.plot(title='最高价和收盘价的股价走势图',xlabel='行索引值',    # 默认值ylabel='股价',xticks=x_ticks)plt.show()  # 展示图形

1.3、添加日期的股价走势图

 import pandas as pdimport matplotlib.pyplot as plt​plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置中文格式plt.rcParams['axes.unicode_minus'] = False  # 正常显示负号​df = pd.read_csv('../数据集/格力电器.csv')# 日期转换->'2024/04/08/date = df['trade_date'].astype(str)year = date.str[:4] # 提取前4位,即年份month=date.str[4:6] # 提取月day=date.str[6:8]   # 提取日# 合并日期,格式为YYYY/MM/DD格式的字符串df['trade_date'] = year + '/' + month + '/' +daydf.sort_values(by='trade_date',inplace=True)    # 由大到小排序x_ticks = [i for i in range(22)]​df.head(22).plot(x='trade_date',y=['high','close'],xticks = x_ticks,   # X轴刻度值rot=90, # X轴刻度值倾斜度fontsize=15,    # 字体大小title='最高价和收盘价的股价走势图',xlabel='日期',    # 默认值ylabel='股价',grid=True  # 显示网格线)plt.show()

二、散点图:展示股价影响因素

2.1、散点图

使用plot()函数绘制散点图,将kind参数设置为"scatter"即可,

 import pandas as pdimport matplotlib.pyplot as plt​plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置中文格式plt.rcParams['axes.unicode_minus'] = False  # 正常显示负号# 读取数据df = pd.read_csv('../数据集/格力电器.csv')# ---------------------------## 绘制图形df.plot(x='vol',y='high',kind='scatter',# 默认为折线图,scatter为散点图title='格力电器成交量和最高价之间的关系散点图',xlabel='成交量',ylabel='最高价',c='red',)# 展示图形plt.show()

2.2、散点图-子图

若还想展示成交量、成交额、收盘价、涨跌额、涨跌幅之间关系的散点图,可以作为子图放到一个大的画布中:

 import pandas as pdimport matplotlib.pyplot as plt​plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置中文格式plt.rcParams['axes.unicode_minus'] = False  # 正常显示负号​df = pd.read_csv('../数据集/格力电器.csv') # # 读取数据fig,axes = plt.subplots(2,2)    # 准备画布# 子图1:df.plot(x='vol',y='high',kind='scatter',# 默认为折线图,scatter为散点图title='格力电器成交量和最高价之间的关系散点图',xlabel='成交量',ylabel='最高价',c='red',ax=axes[0][0])# 子图2:df.plot(x='vol',y='close',kind='scatter',# 默认为折线图,scatter为散点图title='格力电器成交量和收盘价之间的关系散点图',xlabel='成交量',ylabel='收盘价',c='green',ax=axes[0][1])# 子图3:df.plot(x='amount',y='high',kind='scatter',# 默认为折线图,scatter为散点图title='格力电器成交额和最高价之间的关系散点图',xlabel='成交额',ylabel='最高价',c='red',ax=axes[1][0])# 子图4:df.plot(x='amount',y='close',kind='scatter',# 默认为折线图,scatter为散点图title='格力电器成交额和收盘价之间的关系散点图',xlabel='成交额',ylabel='收盘价',c='green',ax=axes[1][1])plt.subplots_adjust(wspace=0.8, # 子图之间的距离hspace=0.5)plt.show()

三、条形图:展现同比成交量

 import matplotlib.pyplot as pltimport pandas as pd​plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置中文格式plt.rcParams['axes.unicode_minus'] = False  # 正常显示负号# 1、读取CSV文件df = pd.read_csv('../数据集/格力电器.csv')date = df['trade_date'].astype(str)# 2、提取年和月year = date.str[:4]month = date.str[4:6]df['year'] = yeardf['month'] = month# 3、按照年和月分组,获取2018和2019年的每月平均成交量group = df[['year', 'month', 'vol']].groupby(by=['year', 'month'])  # 按照年和月分组g_m = group.mean()  # 获取所有字段的平均值m_18 = g_m['vol']['2018']   # 获取2018年每月平均成交量m_19 = g_m['vol']['2019']   # 获取2019年每月平均成交量# 4、将2018和2019年每月成交量平均值数据存储于DataFrame中df2 = pd.DataFrame(list(zip(m_18, m_19)), index=[str(i) + '月' for i in range(1, 13)], columns=['2018', '2019'], )# 5、绘制条形图df2.plot(kind='bar',    # 条形图title='2018年和2019年格力电器每月平均成交量条形图',xlabel='月份',ylabel='成交量均量')plt.show()

若要绘制堆叠条形图,只需在plot()函数中将参数stacked设置为True即可。

若要将条形显示为横向条形图,只需将参数kind设置为barh即可。

四、饼图:展现成交量占比关系

 import pandas as pdimport matplotlib.pyplot as plt​plt.rcParams['font.sans-serif'] = ['SimHei']  # 设置中文格式plt.rcParams['axes.unicode_minus'] = False  # 正常显示负号#1、读取CSV文件df = pd.read_csv('../数据集/格力电器.csv')#2、提取年和月date = df['trade_date'].astype(str)year = date.str[:4] # 提取前4位,即年份month = date.str[4:6] # 提取月份df['year'] = year   # 将年份插入到数据集中df['month'] = month # 将月份插入到数据集中​#3、按照年和月分组,获取2018年每月总成交量group = df[['year','month','vol']].groupby(by=['year','month']) # 按年和月分组g_s = group.sum()   # 获取所有字段总和s_18 = g_s['vol']['2018']   # 获取2018年每月总成交量s_18.index= [str(i) + '月' for i in range(1,13)]​#4、绘制图形s_18.plot(kind='pie',title='2018年格力电器每月成交量占比',autopct='%.2f%%', # 百分比)plt.show()

五、K线图:展现股价走势

5.1、mplfinance的安装与下载

 pip install mplfinance

5.2、绘制K线图

 import mplfinance as mpfimport pandas as pd​data = pd.read_csv('../数据集/格力电器.csv')data.sort_values(by=['trade_date'], inplace=True)date = data['trade_date'].astype(str)​year = date.str[:4]month = date.str[4:6]day = date.str[6:8]data['trade_date'] = year + '/' + month + '/' + daydata.index = pd.DatetimeIndex(data['trade_date'])​data = data[['open', 'close', 'high', 'low', 'vol']]data.columns = ['Open', 'Close', 'High', 'Low', 'Volume']​mpf.plot(data.head(70), # 绘制图形的数据(选取前70条)type='candle', # 设置图像类型volume=True,   # 是否显示成交量style='charles')# 设置图表样式为"charles"

mplfinance的plot()函数的常用参数

参数描述
type设置绘制的 图像类型,有'ohlc'、'candle'、'line'、'renko'类型
volume是否显示成交量,默认不显示
style设置的图表样式,可以通过mpf.available_style()方法获取mplfinance提供的样式名称,有'binance','blueskies','brasil'....。可以自定义样式
title设置标题
ylabel设置主图Y轴标题
ylabel_lower设置次图的Y轴标题
mav设置均线,如2日均线,5日均线,10日均线等
savefig保存图片

下面通过自定义图表样式来美化K线图:

import mplfinance as mpf
import pandas as pddata = pd.read_csv('../数据集/格力电器.csv')
data.sort_values(by=['trade_date'], inplace=True)
date = data['trade_date'].astype(str)year = date.str[:4]
month = date.str[4:6]
day = date.str[6:8]
data['trade_date'] = year + '/' + month + '/' + day
data.index = pd.DatetimeIndex(data['trade_date'])data = data[['open', 'close', 'high', 'low', 'vol']]
data.columns = ['Open', 'Close', 'High', 'Low', 'Volume']# 设置K线颜色
my_color = mpf.make_marketcolors(up='red',  # 设置阳线柱填充颜色down='green',  # 设置阴线柱填充颜色edge='i',  # 设置蜡烛线边缘颜色wick='black',  # 设置蜡烛上下影线的颜色volume={'up': 'red', 'down': 'green'}  # 设置成交量颜色)# 设置图表样式
my_style = mpf.make_mpf_style(marketcolors=my_color,gridaxis='both',  # 设置网格线位置,both双向gridstyle='-.',  # 设置网格线类型base_mpf_style='charles',rc={'font.family': 'SimHei'}  # 设置字体为黑体)# 绘制K线图
mpf.plot(data.head(70),type='candle',  # 设置图像类型'ohlc'/'candle'/'line/renko'mav=(2, 5, 10),  # 绘制2日均线、5日均线和10日均线volume=True,  # 显示成交量style=my_style,  # 自定义图表样式title='格力电器2018年K线图',  # 设置标题ylabel='价格',  # 设置主图Y轴标题ylabel_lower='成交量'  # 设置次图Y轴标题)

mplfinance的make_mpf_style()函数的常用参数:

参数描述
base_mpf_style使用mplfinance中的系统样式,可以在make_marketcolors方法中使用,也可以在make_mpf_style中使用
base_mpl_style使用mplfinance中的系统样式,比如:base_mpl_style='seaborn'
marketcolors使用自定义样式
mavcolors设置nav均线颜色,必须使用列表传递参数
facecolor设置前景色
edgecolor设置边缘线颜色
figcolor设置填充色
gridcolor设置网格线颜色
gridaxis设置网格线方向,'both'、'horizontal'、'vertical‘
gridstyle设置网格线线型。'-'[或solid]、’-’[或dashed]、'-.'[或dashdot]、':'[或dotted]、None
y_on_right设置Y轴位置是否在左右
rc使用rcParams的dict设置样式,如果内容与上面自定义的设置相同,那么自定义设置覆盖rcParams设置

相关文章:

使用Pandas实现股票交易数据可视化

一、折线图:展现股价走势 1.1、简单版-股价走势图 # 简洁版import pandas as pdimport matplotlib.pyplot as plt# 读取CSV文件df pd.read_csv(../数据集/格力电器.csv)data df[[high, close]].plot()plt.show() 首先通过df[[high,close]]从df中获取最高价和收盘…...

蓝桥杯刷题-乌龟棋

312. 乌龟棋 - AcWing题库 /* 状态表示:f[b1,b2,b3,b4]表示所有第 i种卡片使用了 bi张的走法的最大分值。状态计算:将 f[b1,b2,b3,b4]表示的所有走法按最后一步选择哪张卡片分成四类:第 i类为最后一步选择第 i种卡片。比如 i2,则…...

美国纽扣电池认证标准要求16 CFR 第 1700和ANSI C18.3M标准

法规背景 为了纪念瑞茜哈姆史密斯(Reese Hamsmith)美国德州一名于2020年12月因误食遥控器里的纽扣电池而不幸死亡的18个月大的女婴。 美国国会于2022年8月16日颁布了H.R.5313法案(第117-171号公众法)也称为瑞茜法案(Reese’s Law&#xff09…...

华硕ROG幻16笔记本电脑模式切换管理工具完美替代华硕奥创中心管理工具

文章目录 华硕ROG幻16笔记本电脑模式切换管理工具完美替代华硕奥创中心管理工具1. 介绍2. 下载3. 静音模式、平衡模式、增强模式配置4. 配置电源方案与模式切换绑定5. 启动Ghelper控制面板6. 目前支持的设备型号 华硕ROG幻16笔记本电脑模式切换管理工具完美替代华硕奥创中心管理…...

【ROS2笔记六】ROS2中自定义接口

6.ROS2中自定义接口 文章目录 6.ROS2中自定义接口6.1接口常用的CLI6.2标准的接口形式6.3接口的数据类型6.4自定义接口Reference 在ROS2中接口interface是一种定义消息、服务或动作的规范,用于描述数据结构、字段和数据类型。ROS2中的接口可以分为以下的几种消息类型…...

设计模式-代理模式(Proxy)

1. 概念 代理模式(Proxy Pattern)是程序设计中的一种结构型设计模式。它为一个对象提供一个代理对象,并由代理对象控制对该对象的访问。 2. 原理结构图 抽象角色(Subject):这是一个接口或抽象类&#xff0…...

中伟视界:智慧矿山智能化预警平台功能详解

矿山智能预警平台是一种高度集成化的安全监控系统,它能够提供实时的监控和报警功能,帮助企业和机构有效预防和响应潜在的安全威胁。以下是矿山智能预警平台的一些关键特性介绍: 报警短视频生成: 平台能够在检测到报警时自动生成短…...

如何在PPT中获得网页般的互动效果

如何在PPT中获得网页般的互动效果 效果可以看视频 PPT中插入网页有互动效果 当然了,获得网页般的互动效果,最简单的方法就是在 PPT 中插入网页呀。 那么如何插入呢? 接下来为你讲解如何获得(此方法在 PowerPoint中行得通&#…...

HTML段落标签、换行标签、文本格式化标签与水平线标签

目录 HTML段落标签 HTML换行标签 HTML格式化标签 加粗标签 倾斜标签 删除线标签 下划线标签 HTML水平线标签 HTML段落标签 在网页中&#xff0c;要把文字有条理地显示出来&#xff0c;就需要将这些文字分段显示。在 HTML 标签中&#xff0c;<p>标签用于定义段落…...

NVIC简介

NVIC&#xff08;Nested Vectored Interrupt Controller&#xff09;是ARM处理器中用于中断管理的一个重要硬件模块。它负责处理来自多个中断源的中断请求&#xff0c;并根据中断的优先级来安排处理器执行相应的中断服务例程&#xff08;ISR&#xff09;。NVIC是ARM Cortex-M系…...

LeetCode-924. 尽量减少恶意软件的传播【深度优先搜索 广度优先搜索 并查集 图 哈希表】

LeetCode-924. 尽量减少恶意软件的传播【深度优先搜索 广度优先搜索 并查集 图 哈希表】 题目描述&#xff1a;解题思路一&#xff1a;解题思路二&#xff1a;0解题思路三&#xff1a;0 题目描述&#xff1a; 给出了一个由 n 个节点组成的网络&#xff0c;用 n n 个邻接矩阵图…...

【linux】yum 和 vim

yum 和 vim 1. Linux 软件包管理器 yum1.1 什么是软件包1.2 查看软件包1.3 如何安装软件1.4 如何卸载软件1.5 关于 rzsz 2. Linux编辑器-vim使用2.1 vim的基本概念2.2 vim的基本操作2.3 vim命令模式命令集2.4 vim底行模式命令集2.5 vim操作总结补充&#xff1a;vim下批量化注释…...

excel试题转word格式

序号试题选项答案 格式如上。输出后在做些适当调整就可以。 import pandas as pd from docx import Document from docx.shared import Inches# 读取Excel文件 df pd.read_excel(r"你的excel.xlsx")# 创建一个新的Word文档 doc Document()# 添加标题 doc.add_headi…...

C语言学习笔记之指针(二)

指针基础知识&#xff1a;C语言学习笔记之指针&#xff08;一&#xff09;-CSDN博客 目录 字符指针 代码分析 指针数组 数组指针 函数指针 代码分析&#xff08;出自《C陷阱和缺陷》&#xff09; 函数指针数组 指向函数指针数组的指针 回调函数 qsort() 字符指针 一…...

在Debian 12系统上安装Docker

Docker 在 Debian 12 上的安装 安装验证测试更多信息 引言 在现代的开发环境中&#xff0c;容器技术发挥着至关重要的作用。Docker 提供了快速、可靠和易于使用的容器化解决方案&#xff0c;使开发人员和 DevOps 专业人士能够以轻松的方式将应用程序从一个环境部署到另一个环…...

策略者模式(代码实践C++/Java/Python)————设计模式学习笔记

文章目录 1 设计目标2 Java2.1 涉及知识点2.2 实现2.2.1 实现两个接口飞行为和叫行为2.2.2 实现Duck抽象基类&#xff08;把行为接口作为类成员&#xff09;2.2.3 实现接口飞行为和叫行为的具体行为2.2.4 具体实现鸭子2.2.5 模型调用 3 C&#xff08;用到了大量C2.0的知识&…...

vue2/Vue3项目中,通过请求接口来刷新列表中的某个字段(如:Axios)

vue2/Vue3项目中&#xff0c;通过请求接口来刷新列表中的某个字段。可以使用 Vue 的异步请求库&#xff08;如 Axios&#xff09;来发送请求&#xff0c;并在请求成功后更新相应的字段。 示例如下&#xff08;Vue2&#xff09;&#xff1a; 简单的示例如下&#xff0c;假设列…...

Java多线程锁定

前言 利用多线程编程虽然能极大地提升运行效率&#xff0c;但是多线程本身的不稳定也会带来一系列的问题&#xff0c;其中最经典莫过于售票问题&#xff1b;这时就需要人为地加以限制和干涉已解决问题&#xff0c;譬如今日之主题——锁定。 锁定是我们在多线程中用来解决售票…...

【C 数据结构】单链表

文章目录 【 1. 基本原理 】1.1 链表的节点1.2 头指针、头节点、首元节点 【 2. 链表的创建 】2.0 创建1个空链表&#xff08;仅有头节点&#xff09;2.1 创建单链表&#xff08;头插入法&#xff09;*2.2 创建单链表&#xff08;尾插入法&#xff09; 【 3. 链表插入元素 】【…...

[MAUI]集成富文本编辑器Editor.js至.NET MAUI Blazor项目

文章目录 获取资源从源码构建从CDN获取获取扩展插件 创建项目创建控件创建Blazor组件初始化保存销毁编写渲染逻辑 实现只读/编辑功能切换模式获取只读模式状态响应切换事件 实现明/暗主题切换项目地址 Editor.js 是一个基于 Web 的所见即所得富文本编辑器&#xff0c;它由CodeX…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...