第十五届蓝桥杯题解-数字接龙
题意:经过所有格子,并且不能进行交叉,走的下一个格子必须是当前格子值+1%k,输出路径最小的那一条(有8个方向,一会粘图)
思路:按照8个方向设置偏移量进行dfs,第一个到达终点的即为最小路径,直接输出即可
代码:
#include<bits/stdc++.h>
using namespace std;
#define N 12int n,k;
int g[N][N];
int x[]={-1,-1,0,1,1,1,0,-1};
int y[]={0,1,1,1,0,-1,-1,-1};
bool f,vis[N][N];
vector<int> path;void dfs(int u,int v,int st){if(f)return;if(u==n&&v==n&&st==n*n-1){for(auto it:path)cout<<it;cout<<endl;f=true;return;}for(int i=0;i<8;i++){int xx=u+x[i];int yy=v+y[i];if(xx<1||xx>n||yy<1||yy>n)continue;if(vis[xx][yy])continue;if(g[xx][yy]!=(st+1)%k)continue;if(i%2)if(vis[u+x[(i-1)%8]][v+y[(i-1)%8]]&&vis[u+x[(i+1)%8]][v+y[(i+1)%8]])continue;vis[xx][yy]=true;path.push_back(i);dfs(xx,yy,st+1);vis[xx][yy]=false;path.pop_back();}
}int main(){cin>>n>>k;for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)cin>>g[i][j];vis[1][1]=true;dfs(1,1,0);if(!f)cout<<-1<<endl;return 0;
}/*
3 3
0 2 0
1 1 1
2 0 29 9
0 1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 810 10
0 1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 9
0 1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1 010 10
0 1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1 0这组样例还是过不了!!!
10 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
*/
最后提一嘴:
这个爬山题也太难了吧,2 1 1 48 49这种样例咋做啊!!!期待官方std
相关文章:

第十五届蓝桥杯题解-数字接龙
题意:经过所有格子,并且不能进行交叉,走的下一个格子必须是当前格子值1%k,输出路径最小的那一条(有8个方向,一会粘图) 思路:按照8个方向设置偏移量进行dfs,第一个到达终…...

【vue】绑定事件 v-on
v-on 简写: clickkeyupkeydownkeyup.wkeyup.ctrl.a <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><…...

【应用】SpringBoot-自动配置原理
前言 本文简要介绍SpringBoot的自动配置原理。 本文讲述的SpringBoot版本为:3.1.2。 前置知识 在看原理介绍之前,需要知道Import注解的作用: 可以导入Configuration注解的配置类、声明Bean注解的bean方法;可以导入ImportSele…...

中文编程入门(Lua5.4.6中文版)第十二章 Lua 协程 参考《愿神》游戏
在《愿神》的提瓦特大陆上,每一位冒险者都拥有自己的独特力量——“神之眼”,他们借助元素之力探索广袤的世界,解决谜题,战胜敌人。而在提瓦特的科技树中,存在着一项名为“协同程序”的高级秘术,它使冒险者…...
C++笔记之注册回调函数常见的5种情况对比
C++笔记之注册回调函数常见的5种情况对比 —— 2024-04-10 code review! 文章目录 C++笔记之注册回调函数常见的5种情况对比1.五种情况2.示例2.1. `RegisterCallback` 和 `Callback` 都是普通函数2.2. `RegisterCallback` 是成员函数,`Callback` 是普通函数2.3. `RegisterC…...

人工智能揭示矩阵乘法的新可能性
人工智能揭示矩阵乘法的新可能性 数学家酷爱漂亮的谜题。当你尝试找到最有效的方法时,即使像乘法矩阵(二维数字表)这样抽象的东西也会感觉像玩一场游戏。这有点像尝试用尽可能少的步骤解开魔方——具有挑战性,但也很诱人。除了魔方…...

实在智能携手长江新零售俱乐部:探秘实在Agent数字员工,开启零售品牌增长新篇章
近日,实在智能携手长江新零售俱乐部成功举办了“AIGC:数字员工助力零售品牌新增长”主题活动,成功吸引了二十余家企业中高层管理精英的踊跃参与。在此次活动中,与会者围绕零售业数字化转型的当前态势、面临的挑战及其重要性进行了…...

计算机科学与导论 第十七 十八章 计算理论,人工智能
文章预览: 计算理论17.1 引言17.2 简单语言17.3 图灵机邱奇 -图灵 论题 人工智能引言18.1.1 什么是人工智能18.1.2 智能体18.1.3 编程语言 18.2 知识的表示18.2.1 语义网18.2.2 框架18.2.3 谓词逻辑18.2.4 基于规则的系统 18.2 专家系统18.3 语言理解18.4 搜索18.5 …...

linux 设置定时任务---学习
1、设置定时任务 crontab -e 设置格式参考:【Linux】Linux crontab 命令定时任务设置_crontab 设置每天10:30执行-CSDN博客 测试过程: */1 * * * * /root/cronjob.sh 脚本内容: echo "hell0 cronjob" >> /root/test/hello.txt 实现…...

钡铼IOy系列模块深挖工业场景需求提供丰富多样的I/O解决方案
钡铼IOy系列模块以其灵活性和多样性,在工业场景中提供了丰富多样的I/O解决方案,满足了不同行业、不同应用场景的需求。以下是一些常见的工业场景需求及钡铼IOy系列模块提供的解决方案: 1. 工厂自动化 需求:工厂自动化需要对生产线…...
【刷题笔记】第三天
两道简单题 文章目录 [2923. 找到冠军 I](https://leetcode.cn/problems/find-champion-i/description/)[3095. 或值至少 K 的最短子数组 I](https://leetcode.cn/problems/shortest-subarray-with-or-at-least-k-i/description/) 2923. 找到冠军 I 方法1: 如果 i …...

开源模型应用落地-LangChain试炼-CPU调用QWen1.5(一)
一、前言 尽管现在的大语言模型已经非常强大,可以解决许多问题,但在处理复杂情况时,仍然需要进行多个步骤或整合不同的流程才能达到最终的目标。然而,现在可以利用langchain来使得模型的应用变得更加直接和简单。 通过langchain框…...

STM32-模数转化器
ADC(Analog-to-Digital Converter) 指模数转换器。是指将连续变化的模拟信号转换 为离散的数字信号的器件。 ADC相关参数说明: 分辨率: 分辨率以二进制(或十进制)数的位数来表示,一般有 8 位、10 位、12 位、16 位…...

算法刷题记录2
4.图 4.1.被围绕的区域 思路:图中只有与边界上联通的O才不算是被X包围。因此本题就是从边界上的O开始递归,找与边界O联通的O,并标记为#(代表已遍历),最后图中剩下的O就是:被X包围的O。图中所有…...

中国代工巨头旗下芯片公司遭网络攻击,千兆字节数据被泄露
近日,中国智能手机代工巨头闻泰科技旗下荷兰芯片制造商Nexperia发布声明,称其遭遇网络攻击,有未经授权的第三方访问了公司的 IT 服务器,目前已向相关部门报告了此次事件,并与网络安全专家合作开启调查。而据相关消息&a…...

【ARM 裸机】汇编 led 驱动之基本语法
我们要编写的是 ARM 汇编,编译使用的是 gcc 交叉编译器,所以要符合 GNU 语法。 1、汇编指令 汇编由一条条指令构成,ARM 不能直接访问存储器,比如 RAM 中的数据,I.MX6UL 中的寄存器就是 RAM 类型的,我们用…...

scala---基础核心知识(变量定义,数据类型,流程控制,方法定义,函数定义)
一、什么是scala Scala 是一种多范式的编程语言,其设计初衷是要集成面向对象编程和函数式编程的各种特性。Scala运行于Java平台(Java虚拟机),并兼容现有的Java程序。 二、为什么要学习scala 1、优雅 2、速度快 3、能融合到hado…...

OSPF星型拓扑和MGRE全连
一,拓扑 二,要求 1,R6为ISP只能配置IP地址,R1-R5的环回为私有网段 2,R1/4/5为全连的MGRE结构,R1/2/3为星型的拓扑结构, 3,R1为中心站点所有私有网段可以互相通讯,私有网段…...

智能时代中的工业应用中前所未有的灵活桥接和I/O扩展功能解决方案MachXO2系列LCMXO2-1200HC-4TG100I FPGA可编程逻辑IC
lattice莱迪斯 MachXO2系列LCMXO2-1200HC-4TG100I超低密度FPGA现场可编程门阵列,适用于低成本的复杂系统控制和视频接口设计开发,满足了通信、计算、工业、消费电子和医疗市场所需的系统控制和接口应用。 瞬时启动,迅速实现控制——启动时间…...

php:实现压缩文件上传、解压、文件更名、压缩包删除功能
效果图 1.上传文件 2.压缩包文件 3.itemno1文件 或 4.上传到系统路径\ItemNo 5.更名后的itemno1文件(命名:当天日期六位随机数) 代码 <form action"<?php echo htmlspecialchars($_SERVER[PHP_SELF], ENT_QUOTES, UTF-8); ?>" methodpost en…...

C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...

QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...

宇树科技,改名了!
提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...

逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...