论文笔记:Are Human-generated Demonstrations Necessary for In-context Learning?
iclr 2024 reviewer 评分 6668
1 intro
- 大型语言模型(LLMs)已显示出在上下文中学习的能力
- 给定几个带注释的示例作为演示,LLMs 能够为新的测试输入生成输出
- 然而,现行的上下文学习(ICL)范式仍存在以下明显的缺点:
- 最终性能极度敏感于选定的演示示例,到目前为止,还没有公认的完美演示选择标准
- 制作演示可能是劳动密集型的,麻烦的甚至是禁止性的
- 在许多 ICL 场景中,演示不仅包含输入和相应的标签,还包括由注释者生成的推理过程
- 对于许多任务(例如,摘要),人类难以表达决策背后的推理过程。
- 论文提问:我们真的需要人类为 LLMs 提供演示吗,还是 LLMs 可以自己生成演示?
- ——>提出了自我反思提示策略(简称 SEC)
- 不使用手工制作的示例作为演示,而是要求 LLMs 首先自行创建演示,基于这些演示生成最终输出
- SEC 有效地解决了 ICL 的缺点:它不仅可以节省制作演示的繁重劳动,更重要的是,消除了人工制作提示的不稳定性
- ——>提出了自我反思提示策略(简称 SEC)
2 方法
2.1 Vanilla SEC

2.2 COT-SEC
原理和2.1是一样的,之不多这边让大模型同时给出推导和答案的样例
3 实验
3.1 不同数据集希望LLM 生成的案例数量

3.2 结果比较






3.2 生成的案例数量的影响

3.3 prompt举例

4 reviewer 意见整理
4.1 reviewer1 (6)

4.2 reviewer2(6)

4.3 reviewer3(6)

4.4 reviewer4(8)
相关文章:
论文笔记:Are Human-generated Demonstrations Necessary for In-context Learning?
iclr 2024 reviewer 评分 6668 1 intro 大型语言模型(LLMs)已显示出在上下文中学习的能力 给定几个带注释的示例作为演示,LLMs 能够为新的测试输入生成输出然而,现行的上下文学习(ICL)范式仍存在以下明显…...
C语言 | Leetcode C语言题解之第28题找出字符串中第一个匹配项的下标
题目: 题解: int strStr(char* haystack, char* needle) {int n strlen(haystack), m strlen(needle);if (m 0) {return 0;}int pi[m];pi[0] 0;for (int i 1, j 0; i < m; i) {while (j > 0 && needle[i] ! needle[j]) {j pi[j - …...
「Python大数据」数据采集-某东产品数据评论获取
前言 本文主要介绍通过python实现数据采集、脚本开发、办公自动化。数据内容范围:星级评分是1-3分、获取数据页面是前50页。 友情提示 法律分析:下列三种情况,爬虫有可能违法,严重的甚至构成犯罪: 爬虫程序规避网站经营者设置的反爬虫措施或者破解服务器防抓取措施,非法…...
ORACLE错误提示概述
OceanBase分布式数据库-海量数据 笔笔算数 保存起来方便自己查看错误代码。 ORA-00001: 违反唯一约束条件 (.) ORA-00017: 请求会话以设置跟踪事件 ORA-00018: 超出最大会话数 ORA-00019: 超出最大会话许可数 ORA-00020: 超出最大进程数 () ORA-00021: 会话附属于其它某些进程…...
2024年4月13日美团春招实习试题【第一题:好子矩阵】-题目+题解+在线评测【模拟】
2024年4月13日美团春招实习试题【第一题:好子矩阵】-题目题解在线评测【模拟】 题目描述:输入描述输出描述样例 解题思路一:模拟解题思路二:思路二解题思路三:直接判断 题目描述: 塔子哥定义一个矩阵是”好矩阵”&…...
ssm057学生公寓管理中心系统的设计与实现+jsp
学生公寓管理中心系统设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本学生公寓管理中心系统就是在这样的大环境下诞生,其可以帮助管…...
循环神经网络(RNN):概念、挑战与应用
循环神经网络(RNN):概念、挑战与应用 1 引言 1.1 简要回顾 RNN 在深度学习中的位置与重要性 在深度学习的壮丽图景中,循环神经网络(Recurrent Neural Networks,RNN)占据着不可或缺的地位。自从…...
UML 介绍
前言 UML 简介。 文章目录 前言一、简介1、事务2、关系1)依赖2)关联聚合组合 3)泛化4)实现 二、类图三、对象图四、用例图五、交互图1、序列图(顺序图)2、通信图 六、状态图七、活动图八、构件图࿰…...
Pytorch——训练时,冻结网络部分参数的方法
一、原理: 要固定训练网络的哪几层,只需要找到这几层参数(parameter),然后将其 .requires_grad 属性设置为 False 即可。 二、代码: # 根据参数层的 name 来进行冻结 unfreeze_layers ["text_id"] # 用列表 # 设置冻…...
制冷铜管焊接介绍
铜管是制冷装置的重要原材料,它主要有两种用途:①制作换热器。②制作连接管道和管件。常用的焊料类型有铜磷焊料、银铜焊料、铜锌焊料等。在焊接时要根据管道材料的特点,正确的选择焊料及熟练的操作,以确保焊接的质量。 1.1对同类…...
spring06:mybatis-spring(Spring整合MyBatis)
spring06:mybatis-spring(Spring整合MyBatis) 文章目录 spring06:mybatis-spring(Spring整合MyBatis)前言:什么是 MyBatis-Spring?MyBatis-Spring 会帮助你将 MyBatis 代码无缝地整合…...
如何使用自定义Promptbooks优化您的安全工作流程
在当今的数字化时代,安全工作流程的优化变得前所未有的重要。安全团队需要快速、有效地响应安全事件,以保护组织的数据和资产。Microsoft Copilot for Security提供了一种强大的工具——自定义Promptbooks,它可以帮助安全专家通过自动化和定制…...
Text2sql的一些技巧
最近看到了一篇关于text2sql的文章,以及一些论文。对使用模型做text2sql给了一些不错的建议。 参考文章:24年大模型潜力方向:大浪淘沙后的Text-to-SQL和Agent - 知乎 论文:https://arxiv.org/pdf/2403.09732.pdf 关于模型的建议 …...
aws云靶场和一些杂记
aws靶场 在AWS靶场中,存在三个安全问题:1) 一个S3存储桶政策配置错误,允许公共访问,通过访问特定域名可获取flag。2) SQS消息队列的政策没有限制角色,允许发送和接收消息,通过aws sqs命令行工具的receive-…...
《AI编程类工具之四——GitHub copiot》
一.简介 官网:https://github.com/features/copilot GitHub Copilot是由GitHub和OpenAI合作开发的一款人工智能编程助手。这款工具基于OpenAI的GPT-3模型进行训练,旨在帮助开发者更高效地编写代码。 二.功能介绍 智能代码补全:GitHub Cop…...
Unity类银河恶魔城学习记录13-1 p142 Save system源代码
Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释,可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili FileDataHandler.cs using System; using System.IO; using UnityEngine; p…...
【C++杂货铺】继承
目录 🌈前言🌈 📁 继承的概念和定义 📂 概念 📂 定义 📁 基类和派生类对象赋值转换 📁 继承中的作用域 📁 派生类的默认成员函数 构造函数 析构函数 拷贝构造函数 赋值重载…...
快速上手Linux核心命令
Linux 的重要性不用我多说了吧,大多数互联网公司,服务器都是采用的Linux操作系统 Linux是一个主要通过命令行来进行管理的操作系统。 只有熟练掌握Linux核心命令,在使用起来我们才会得心应手 这里给大家整理了Linux一些核心命令࿰…...
背 单 词 (考研词汇闪过)
单词: 买考研词汇闪过 研究艾宾浩斯遗忘曲线 https://www.bilibili.com/video/BV18Y4y1h7YR/?spm_id_from333.337.search-card.all.click&vd_source5cbefe6dd70d6d84830a5891ceab2bf9 单词方法 闪记背两排(5min)重复一遍(2mi…...
数据库工具解析之 OceanBase 数据库导出工具
背景 大多数的数据库都配备了自己研发的导入导出工具,对于不同的使用者来说,这些工具能够发挥不一样的作用。例如:DBA可以使用导数工具进行逻辑备份恢复,开发者可以使用导数工具完成系统间的数据交换。这篇文章主要是为OceanBase…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...

