当前位置: 首页 > news >正文

【机器学习300问】67、均方误差与交叉熵误差,两种损失函数的区别?

一、均方误差(Mean Squared Error, MSE)

        假设你是一个教练,在指导学生射箭。每次射箭后,你可以测量子弹的落点距离靶心的差距(误差)。MSE就像是计算所以射击误差的平方后的平均值。它强调了每一次偏离靶心的大小。

(1)定义与公式

        均方误差损失函数是衡量模型预测值和实际值差异的常用指标,定义为预测值与真实值之间差异的平方和的平均值。

        均方误差公式如下:

 L(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n}(y_i - \hat{y_i})^2

        其中,y_i是真实的目标值,\hat y_i是模型预测的值,n是样本数量。

        均方误差损失对大的误差“惩罚”更严重,因为它将误差平方,这意味着大误差的影响会被放大。

(2)导数

        MSE的导数用于指导模型参数更新的方向和步长。为了求导方便,可以给损失函数乘上个二分之一:

L(y, \hat{y}) = \frac{1}{2n} \sum_{i=1}^{n}(y_i - \hat{y_i})^2

        对于单个样本来说,参数\theta求偏导得到的公式如下:

\frac{dL}{d\hat{y_i}} = 2(y_i - \hat{y_i})

\frac{dL}{d\theta _j} =\frac{dL}{d\hat{y_i}}\frac{d\hat{y_i}}{d\theta _j} = -(y_i - \hat{y_i})\frac{d\hat{y_i}}{d\theta _j}

        这意味着对于每一个参数,模型会沿着误差方向的反方向进行调整,调整幅度与误差大小和模型输出对参数的敏感度(偏导)成正比。


二、交叉熵误差(Cross-Entropy Loss)

        假设你正在教一群学生区分猫和狗的图片。每次他们判断时,你就会根据他们回答的“是猫”或“是狗”的概率与实际标签对比,给他们打分。交叉熵就像是衡量他们的答案与正确答案之间的“信息距离”,误差分数越低表示他们的判断越接近真相。

(1)定义与公式

        交叉熵损失是由信息论中的交叉熵概念发展而来的,它衡量的是在给定真实标签的条件下,模型预测概率分布与真实的概率分布之间的差异。当预测值与实际标签越接近时,交叉熵损失越小。

        以二分类为例交叉熵误差的公式:

L(y, \hat{y}) = -\frac{1}{n} \sum_{i=1}^{n}[y_i \log(\hat{y_i}) + (1 - y_i) \log(1 - \hat{y_i})]

        其中的y_i是真实的目标值,\hat y_i是模型预测的值,n是样本数量。在二分类问题中y \in \{0,1\},而预测值\hat y_i也可以看成是模型预测的相应类别概率p。所以有些公式也写成(下面公式只列举了一个样本,没有相加起来求平均):

L(y,p)=-ylog(p)-(1-y)log(1-p)

(2)导数

        交叉熵损失的导数有助于指导模型调整其输出概率。对\hat y_i求导公式如下:

\frac{dL}{d\hat{y_i}} = \frac{-y_i}{\hat{y_i}} + \frac{1-y_i}{1-\hat{y_i}}

        导数告诉模型,当预测概率p低于真实标签y时,应增加输出概率,反之若预测概率过高则应降低。调整幅度同样取决于输出对参数的敏感度。


三、两者使用场景的区别

  • 均方误差用于回归问题:当目标是预测连续数值型变量时,如预测房价、气温、销售额、股票价格等,均方损失是最常用的损失函数。这类任务要求模型输出一个具体的数值,而非离散的类别标签。
  • 交叉熵误差用于分类问题:当目标是预测离散的类别标签时,尤其是对于多类别的分类任务(包括二分类),交叉熵损失是首选的损失函数。例如,图像分类(区分猫、狗、鸟等)、文本分类(判断新闻主题、情感极性)、疾病诊断(判断患者是否患病)等。

        当处理连续数值预测的回归任务时,优先考虑使用均方损失(MSE)。而当面对离散类别标签的分类任务时,交叉熵损失(CE Loss)通常是更合适的选择。

相关文章:

【机器学习300问】67、均方误差与交叉熵误差,两种损失函数的区别?

一、均方误差(Mean Squared Error, MSE) 假设你是一个教练,在指导学生射箭。每次射箭后,你可以测量子弹的落点距离靶心的差距(误差)。MSE就像是计算所以射击误差的平方后的平均值。它强调了每一次偏离靶心的…...

SAP打印输出设置

SAP打印输入有很多方式,适合不同的应用场景。 一.打印输出总体概览图 二.前台打印 这个是比较常见的,前端打印的出现减轻了管理员的工作量,用户可以选择自己电脑上的打印机输出,不需要所有打印机都在SAP平台中进行配置&#xff0…...

qt对json文件下,qdatetime时间的正确读写方式

qt 对json文件下qdatetime时间的正确读写方式 被搞了很长时间,最后发现是需要控制格式。 正确方式 // read QByteArray localBytes mapJson["playTime"].toString().toLocal8Bit(); char* char_time localBytes.data(); std::string str_time char_…...

【系统分析师】计算机网络

文章目录 1、TCP/IP协议族1.1 DHCP协议1.2 DNS协议1.3网络故障诊断 2、网路规划与设计2.1逻辑网络设计2.2物理网络设计2.3 分层设计 3、网络接入3.1 接入方式3.2 IPv6地址 4、综合布线技术5、物联网5.1物联网概念与分层5.2 物联网关键技术 6、云计算7、网络存储技术&#xff08…...

DDoS攻击愈演愈烈,谈如何做好DDoS防御

DDoS攻击是目前最常见的网络攻击方式之一,各种规模的企业包括组织机构都在受其影响。对于未受保护的企业来讲,每次DDoS攻击的平均成本为20万美元。可见,我们显然需要开展更多的DDoS防御工作。除考虑如何规避已发生的攻击外,更重要…...

48.基于SpringBoot + Vue实现的前后端分离-雪具销售系统(项目 + 论文PPT)

项目介绍 本站是一个B/S模式系统,采用SpringBoot Vue框架,MYSQL数据库设计开发,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得基于SpringBoot Vue技术的雪具销售系统设计与实现管理工作系统…...

P8715 [蓝桥杯 2020 省 AB2] 子串分值 (双边检测)

# [蓝桥杯 2020 省 AB2] 子串分值 ## 题目描述 对于一个字符串 $S$, 我们定义 $S$ 的分值 $f(S)$ 为 $S$ 中恰好出现一次的字符个数。例如 $f\left({ }^{\prime \prime} \mathrm{aba}{ }^{\prime \prime}\right)1$,$f\left({ }^{\prime \prime} \mathrm{abc}{ }^{…...

(十四)C++自制植物大战僵尸游戏windows平台视频播放实现

植物大战僵尸游戏开发教程专栏地址http://t.csdnimg.cn/8UFMs VLC库 在Cocos2d-x游戏开发框架中,没有实现windows平台视频播放的功能,需要自定义实现。在本项目中使用vlc库实现windows平台的视频播放功能。 vlc官网:网址 下载完成后&#x…...

深入理解GCC/G++在CentOS上的应用

文章目录 深入理解GCC/G在CentOS上的应用编译C和C源文件C语言编译C语言编译 编译过程的详解预处理编译汇编链接 链接动态库和静态库静态库和动态库安装静态库 结论 深入理解GCC/G在CentOS上的应用 在前文的基础上,我们已经了解了CentOS的基本特性和如何在其上安装及…...

C语言【复合类型(自定义类型)】

一、结构体 结构体(struct)可以理解为用户自定义的特殊的复合的“数据类型”; 1. 结构体变量的定义和初始化 定义结构体变量的方式: 先声明结构体类型再定义变量名 在声明类型的同时定义变量 // 结构体类型的定义 struct stu {char name[50];int age;…...

【python】初识爬虫

Python爬虫介绍 目录 一、概述二、Python爬虫的基本构成爬虫引擎解析器数据存储三、Python爬虫的主要技术请求与响应URL管理页面解析数据存储四、Python爬虫的应用场景数据采集搜索引擎竞品分析价格监控五、Python爬虫的开发流程六、常用的库...

提高小红书底层逻辑认知+短视频思路打爆笔记+纯带货笔记起号(8节课)

课程内容: 小红书如何0押金开通店铺 .mp4 店铺基础搭建.mp4 小红营的流量从哪里来? 如何用养号发现优质的对标笔记?养号的真正意义是什么?.mp4 什么叫垂类标签? 账号如何打上正确的标签 .mp4 前期笔记是否挂车?不同类型的笔记审核标准是什么?.mp4 如何用…...

力扣:219. 存在重复元素 II

力扣&#xff1a;219. 存在重复元素 II 给你一个整数数组 nums 和一个整数 k &#xff0c;判断数组中是否存在两个 不同的索引 i 和 j &#xff0c;满足 nums[i] nums[j] 且 abs(i - j) < k 。如果存在&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 …...

程序安装 - 笔记

1 程序IOServer,依赖自己开发libs7.so.如何安装程序 要安装依赖于自己开发的 libs7.so 的程序 IOServer,你需要执行以下步骤: 编译 IOServer 程序:确保 IOServer 程序的源代码处于可用状态,并且已经编译成可执行文件。这可能需要执行诸如 make 或者其他编译命令,具体取决…...

文心一言 vs. GPT-4: 全面比较

1. 训练数据和预训练 文心一言 训练数据&#xff1a;文心一言是由中国研究人员开发的中文语言模型。它主要在大量古典中文文学作品上进行训练&#xff0c;包括诗歌、散文和历史文本。这些文学作品涵盖了丰富的中文语言和文化&#xff0c;使得文心一言在传统文化方面具有独特优…...

图书管理系统概述

自友图书馆管理系统解决方案适用于中小学、大中专院校以及企事业单位中小型图书馆的自动化管理需求&#xff0c;其功能覆盖了图书馆自动化集成管理业务流程所包括的所有环节。《图书馆管理系统》首先应该按照我国图书馆行业通用CNMARC格式及《中图法第四版》行业标准开发而成,支…...

中国老铁路增开对国际旅客列车开行

4月13日&#xff0c;中老铁路国际旅客列车开行一周年之际&#xff0c;中老两国铁路部门在中国西双版纳至老挝琅勃拉邦两大著名旅游城市间增开1对国际旅客列车&#xff0c;旅客乘火车可实现两地间当日往返。标题&#xff1a;古道新程——中国老铁路增开国际旅客列车 在这个日新月…...

搭建个人智能家居 4 -WS2812B-RGB灯

搭建个人智能家居 4 - WS2812B-RGB灯 前言说明ESPHomeHomeAssistant 前言 上一篇文章我们已经完成了第一个外设的添加&#xff08;一个LED灯&#xff09;&#xff0c;今天接着来“壮大”这个系统&#xff0c;添加第二个外设“RGB灯”。 环境搭建可以回顾前面的文章。前文回顾&…...

C++类与对象(中)②

目录 1.赋值运算符重载 1.1运算符重载 1.2赋值运算符重载 1.2.1赋值运算符重载格式 1.2.2赋值运算符只能重载成成员函数不能重载成全局函数 1.2.3同拷贝函数一样&#xff0c;如果类是形如日期类这样变量全是内置类型的&#xff0c;赋值运算符就必须自己实现&#xff0c;…...

Qt——xml文件生成DBus接口

1. 如何根据xml文件生成Dbus接口 要使用 XML 文件生成 D-Bus 接口&#xff0c;你可以按照以下步骤操作&#xff1a; 步骤 1: 准备 XML 文件 确保你的 XML 文件遵循 D-Bus 的接口描述规范。这通常包括定义接口、方法、信号和属性。一个基本的例子如下&#xff1a; <!DOCTYPE…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...