RVM(相关向量机)、CNN_RVM(卷积神经网络结合相关向量机)、RVM-Adaboost(相关向量机结合Adaboost)
当我们谈到RVM(Relevance Vector Machine,相关向量机)、CNN_RVM(卷积神经网络结合相关向量机)以及RVM-Adaboost(相关向量机结合AdaBoost算法)时,每种模型都有其独特的原理和结构。以下是对这三种模型的详细介绍:
1. RVM(Relevance Vector Machine)
原理
RVM是一种基于贝叶斯框架的稀疏概率模型,用于回归和分类问题。它基于稀疏贝叶斯学习理论,通过最大化后验概率来自动确定相关向量(即那些对模型输出有显著影响的输入数据点)。与SVM(支持向量机)类似,RVM也试图在高维空间中寻找一个超平面来分隔数据,但RVM引入了概率解释,并且它生成的模型通常比SVM更稀疏,这意味着它使用更少的支持向量。
结构
RVM的结构相对简单,主要包括以下几个部分:
- 输入层:接收原始输入数据。
- 特征映射层(对于回归问题可能不存在):将数据映射到高维空间,以便更好地拟合非线性关系。
- 相关向量层:通过训练确定哪些输入数据点对模型输出有显著影响,并将这些点作为相关向量。
- 输出层:根据相关向量计算输出。
2. CNN_RVM(Convolutional Neural Network 结合 Relevance Vector Machine)
原理
CNN_RVM是将卷积神经网络(CNN)和RVM结合起来的模型,旨在利用CNN的特征提取能力和RVM的稀疏性来提高回归或分类性能。CNN用于从原始输入数据中提取有意义的特征,然后这些特征被送入RVM进行进一步的建模和预测。
结构
CNN_RVM的结构包括以下几个部分:
- CNN部分:
- 输入层:接收原始图像或序列数据。
- 卷积层:使用卷积核提取局部特征。
- 池化层(可选):对卷积层的输出进行下采样,以减少计算量和参数数量。
- 全连接层(可选):将卷积和池化后的特征展平并连接到全连接层,以便进行进一步的特征变换。
- RVM部分:
- 接收CNN输出的特征向量。
- 使用RVM算法对这些特征进行建模和预测。
3. RVM-Adaboost(Relevance Vector Machine 结合 AdaBoost)
原理
RVM-Adaboost是将RVM和AdaBoost算法结合起来的模型。AdaBoost是一种集成学习算法,它通过迭代地训练多个弱分类器并将它们组合成一个强分类器来提高分类性能。在RVM-Adaboost中,我们首先将训练数据划分为多个子集,并使用RVM在每个子集上训练一个弱分类器。然后,AdaBoost算法根据每个弱分类器的性能(即错误率)为它们分配权重,并将这些弱分类器组合成一个强分类器。
结构
RVM-Adaboost的结构包括以下几个部分:
- 数据划分:将原始训练数据划分为多个子集。
- RVM弱分类器训练:在每个数据子集上使用RVM训练一个弱分类器。
- AdaBoost集成:
- 初始化权重:为每个训练样本分配相同的权重。
- 迭代训练:在每个迭代中,使用当前权重训练一个RVM弱分类器,并计算其错误率。根据错误率更新样本权重(分类错误的样本权重增加,分类正确的样本权重减少)。
- 组合弱分类器:将所有训练好的RVM弱分类器按照它们的权重组合成一个强分类器。
这种结合方式可以充分利用RVM在稀疏性和概率解释方面的优势以及AdaBoost在集成学习方面的优势,从而提高分类性能。
基于风电预测数据集:

预测结果对比:




相关文章:
RVM(相关向量机)、CNN_RVM(卷积神经网络结合相关向量机)、RVM-Adaboost(相关向量机结合Adaboost)
当我们谈到RVM(Relevance Vector Machine,相关向量机)、CNN_RVM(卷积神经网络结合相关向量机)以及RVM-Adaboost(相关向量机结合AdaBoost算法)时,每种模型都有其独特的原理和结构。以…...
Java--方法的使用
1.1什么是方法 方法顾名思义就是解决问题的办法,在程序员写代码的时候,会遇到很多逻辑结构一样,解决相同问题时,每次都写一样的代码,这会使代码看起来比较绒余,代码量也比较多,为了解决这个问题…...
linux - 主次设备号自动申请
alloc_chrdev_region 原型如下,该函数向内核申请一个空闲的主设备号。 alloc_chrdev_region(&g_aputriger_dev, 0, APUTRIGER_MAX_NUM, "aputriger0"); 第四个参数是我们使用cat /proc/devices 看到的名称 /*** alloc_chrdev_region() - register a…...
我写了一套几乎无敌的参数校验组件!基于 SpEL 的参数校验组件「SpEL Validator」
前言 大家好,我是阿杆,不是阿轩。 参数校验这个东西,很多情况下都是比较简单的,用 NotNull、Size 等注解就可以解决绝大多数场景,但也有一些场景是这些基本注解解决不了的,只能用一些其他的方式处理&…...
输入序列太长 gan CGAN
transformer序列长度大导致计算复杂度高 GAN 2. 训练过程 第一阶段:固定「判别器D」,训练「生成器G」。使用一个性能不错的判别器,G不断生成“假数据”,然后给这个D去判断。开始时候,G还很弱,所以很容易被…...
uni-app scroll-view隐藏滚动条的小细节 兼容主流浏览器
开端 想写个横向滚动的列表适配浏览器,主要就是隐藏一下滚动条在手机上美观一点。 但是使用uni-app官方文档建议的::-webkit-scrollbar在目标标签时发现没生效。 .scroll-view_H::-webkit-scrollbar{display: none; }解决 F12看了一下,原来编译到浏览…...
Java常用API之LinkedList类解读
写在开头:本文用于作者学习我将官方文档中LinkedList 1.6版本中类中绝大部分API全测了一遍并打印了结果,日拱一卒,常看常新。 自己补充了一些对该数据结构的理解,如有不对的地方,请各位指正,谢谢。 首先&…...
移动端自适应
基本实现核心思想 基本原则上是,布局更多地使用flex,然后尺寸使用rem,vw,vh为单位如果是根据不同的屏幕需要有不同的布局了,一般通过检测屏幕尺寸换不同的站点或者媒体查询使用css rem 以html字体太小为1rem的大小&…...
自动化运维工具-Ansible
一、Ansible概述 Ansible是一种基于python开发的自动化运维工具,它只需要在服务端安装ansible,无需在每个客户端安装客户端程序,通过ssh的方式来进行客户端服务器的管理,基于模块来实现批量数据配置、批量设备部署以及批量命令执…...
力扣:62. 不同路径
62. 不同路径 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。 问总共有多少条不同的路径&…...
store内路由跳转router.push
选择action还是mutation 选择action mutation 是用来改变state的,不应该包含路由相关操作mutation是同步执行的,不应该包含异步操作,而路由是异步操作 action中进行路由跳转 因为vuex中没有this,所以不能用this.$router&#…...
ChatGPT Web Midjourney一键集成最新版
准备工具 服务器一台 推荐使用浪浪云服务器 稳定 安全 有保障 chatgpt api 推荐好用白嫖的api 项目演示 项目部署 浏览器访问casaos 添加软件原添加 https://gitee.com/langlangy_1/CasaOS-AppStore-LangLangy/raw/master/chatmjd.zip 安装此软件 等待安装 安装后再桌面设置…...
springboot mongodb分片集群事务
前置 mongodb分片集群想要使用事务,需要对应分片没有仲裁节点 代码 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-mongodb</artifactId><version>2.1.0.RELEASE</version></d…...
node报错——解决Error: error:0308010C:digital envelope routines::unsupported——亲测可用
今天在打包vue2项目时,遇到一个报错: 最关键的代码如下: Error: error:0308010C:digital envelope routines::unsupportedat new Hash (node:internal/crypto/hash:80:19)百度后发现是node版本的问题。 在昨天我确实操作了一下node&…...
golang系统内置函数整理
go语言中有很多系统内置的函数, 为了方便学习,对系统内置函数的函数定义 入参和返回值做如下整理,以方便学习和记忆。 Go语言系统级别的内置函数不多,但是包含的知识点可不少,是学习go语言说必须要搞明白的基础知识 …...
武汉星起航:五对一服务体系,助力创业者成功进军跨境电商市场
随着全球化的深入发展和互联网的普及,跨境电商已成为越来越多国内创业者的首选。然而,跨境电商市场的复杂性和多变性使得许多新手创业者望而却步。在这样的背景下,武汉星起航电子商务有限公司以其独特的五对一服务体系,为创业者提…...
C++常用库函数——strcmp、strchr
1、strcmp:比较两个字符串的值是否相等 例如 char a1[6] "AbDeG",*s1 a1;char a2[6] "AbdEg",* s2 a2;s1 2;s2 2;printf("%d \n", strcmp(s1, s2));return(0); s1指向a1,s2指向a2,strcmp表示比较s1和s…...
vue3怎么使用vant的IndexBar 索引栏
Vant 是一个基于 Vue 的移动端 UI 组件库,它提供了许多常见的移动端组件,包括 IndexBar 索引栏。以下是如何在 Vue 3 中使用 Vant 的 IndexBar 索引栏的步骤: 安装 Vant 如果你还没有安装 Vant,你可以使用 npm 或 yarn 来安装它…...
VMware常见问题(技巧)总结
目录 问题虚拟机中windows11如何开启vt 虚拟化?虚拟机Windows 11 中的相机使用失败问题? 待续、更新中 问题 虚拟机中windows11如何开启vt 虚拟化? 编辑设置—打对钩 选对正确镜像( 可翻看以往文章,有提到) 虚拟机Windows 11 中的相机使用失败问题? 1 . 没安装合适的驱动 …...
VS Code 保存+格式化代码
在 VSCode 中,使用 Ctrl S 快捷键直接保存并格式化代码: 打开 VSCode 的设置界面:File -> Preferences -> Settings在设置界面搜索框中输入“format on save”,勾选“Editor: Format On Save”选项,表示在保存…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
