当前位置: 首页 > news >正文

LSTM递归预测(matlab)

LSTM(长短期记忆)递归预测原理及步骤详解如下:

LSTM递归预测(matlab)代码获取戳此处代码获取戳此处代码获取戳此处

一、LSTM递归预测原理

LSTM是一种特殊的递归神经网络(RNN),它能够学习长期依赖关系。传统的RNN在处理长序列时存在梯度消失和梯度爆炸的问题,导致无法有效捕捉长期依赖。LSTM通过引入“门”机制解决了这一问题,使得信息可以在网络中长时间传递而不会被遗忘。

LSTM的核心是LSTM细胞,它包含了三个门:遗忘门、输入门和输出门,以及一个记忆单元。这些门的作用如下:

  1. 遗忘门:决定从记忆单元中丢弃哪些信息。
  2. 输入门:决定哪些新的信息应该被存储在记忆单元中。
  3. 输出门:基于记忆单元的状态来决定当前LSTM细胞的输出。

在轨迹预测中,LSTM网络被训练为一个端到端的模型。当输入轨迹序列时,LSTM网络会自动学习前面的事件对后续事件的影响,并尝试预测未来的位置或状态。对于每个输入序列,LSTM都会生成一个预测输出,这个预测输出是从LSTM的输出门中获得的。

二、LSTM递归预测步骤

  1. 数据准备:

    • 收集时间序列数据:根据预测任务的需求,收集相关的时间序列数据。
    • 数据清洗:对收集到的数据进行预处理,包括去除噪声、缺失值填充等。
    • 数据划分:将数据集划分为训练集、验证集和测试集。训练集用于训练模型,验证集用于调整超参数,测试集用于评估模型的性能。
  2. 构建LSTM模型:

    • 确定模型结构:包括LSTM层的层数、隐藏单元数等。
    • 初始化模型参数:包括权重和偏置项等。
    • 选择损失函数和优化器:根据任务需求选择合适的损失函数和优化器。
  3. 训练模型:

    • 将训练集输入到LSTM模型中,计算模型的输出和损失函数值。
    • 通过反向传播算法计算梯度,并使用优化器更新模型参数。
    • 重复上述步骤,直到模型在验证集上的性能达到预设的阈值或达到最大迭代次数。
  4. 验证模型:

    • 将验证集输入到训练好的LSTM模型中,计算模型的预测结果和性能指标(如准确率、召回率等)。
    • 根据验证结果调整模型结构或超参数,以获得更好的性能。
  5. 预测未来数据:

    • 将测试集或新的时间序列数据输入到训练好的LSTM模型中,进行预测。
    • 对预测结果进行后处理和分析,以提取有用的信息或做出决策。
  6. 可视化结果(可选):

    • 将预测结果以图表或其他可视化形式展示,以便更直观地了解预测结果和性能。
  7. 部分代码
  8. % 训练集和测试集划分
    outdim = 1;                                  % 最后一列为输出
    num_size = 0.95;                              % 训练集占数据集比例
    num_train_s = round(num_size * num_samples); % 训练集样本个数
    f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
    T_train = res(1: num_train_s, f_ + 1: end)';
    M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
    T_test = res(num_train_s + 1: end, f_ + 1: end)';
    N = size(P_test, 2);%  数据归一化
    [p_train, ps_input] = mapminmax(P_train, 0, 1);
    p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
    t_test = mapminmax('apply', T_test, ps_output);%  格式转换
    for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i);
    endfor i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i);
    end%  创建LSTM网络,
    layers = [ ...sequenceInputLayer(f_)              % 输入层lstmLayer(55)                      reluLayer                           fullyConnectedLayer(outdim)         % 回归层regressionLayer];

    所采用数据集:

  9. 效果图

相关文章:

LSTM递归预测(matlab)

LSTM(长短期记忆)递归预测原理及步骤详解如下: LSTM递归预测(matlab)代码获取戳此处代码获取戳此处代码获取戳此处 一、LSTM递归预测原理 LSTM是一种特殊的递归神经网络(RNN),它能够…...

计算机网络 备查

OSI 七层模型 七层模型协议各层实现的功能 简要 详细 TCP/IP协议 组成 1.传输层协议 TCP 2.网络层协议 IP 协议数据单元(PDU)和 封装 数据收发过程 数据发送过程 1. 2.终端用户生成数据 3.数据被分段,并加上TCP头 4.网络层添加IP地址信息…...

查看软件包依赖关系

列出软件包依赖文件列表 rpm -ql 命令用于列出已安装软件包的文件列表。它显示软件包中包含的文件及其对应的路径。 具体来说,-q 选项表示查询已安装的软件包,而 -l 选项表示列出软件包中的文件列表。 例如,如果要查看已安装的 nginx 软件…...

C++ 中 strcmp(a,b) 函数的用法

【C 中 strcmp(a,b) 函数的用法】 ● 若 len(a)>len(b)&#xff0c;则返回1。 ● 若 len(a)len(b)&#xff0c;则返回0。 ● 若 len(a)<len(b)&#xff0c;则返回-1。【C 中 strcmp(a,b) 函数的用法代码一】 #include <bits/stdc.h> using namespace std;int main…...

Servlet(一些实战小示例)

文章目录 一、实操注意点1.1 代码修改重启问题1.2 Smart Tomcat的日志1.3 如何处理错误 一. 抓自己的包二、构造一个重定向的响应&#xff0c;让页面重定向到百度主页三、让服务器返回一个html数据四、表白墙4.1 约定前后端数据4.2 前端代码4.3 后端代码4.4 保存在数据库的版本…...

【JVM】垃圾回收机制(Garbage Collection)

目录 一、什么是垃圾回收&#xff1f; 二、为什么要有垃圾回收机制&#xff08;GC&#xff09;&#xff1f; 三、垃圾回收主要回收的内存区域 四、死亡对象的判断算法 a&#xff09;引用计数算法 b&#xff09;可达性分析算法 五、垃圾回收算法 a&#xff09;标记-清除…...

C++中的priority_queue模拟实现

目录 priority_queue模拟实现 priority_queue类定义 priority_queue构造函数 priority_queue类push()函数 priority_queue类pop()函数 priority_queue类size()函数 priority_queue类empty()函数 priority_queue类top()函数 仿函数与priority_queue类模拟实现 仿函数 …...

【Kafka】1.Kafka核心概念、应用场景、常见问题及异常

Kafka 是一个分布式流处理平台&#xff0c;最初由 LinkedIn 开发&#xff0c;后成为 Apache 软件基金会的顶级项目。 它主要用于构建实时数据管道和流式应用程序。它能够高效地处理高吞吐量的数据&#xff0c;并支持消息发布和订阅模型。Kafka 的主要用途包括实时分析、事件源、…...

LTE的EARFCN和band之间的对应关系

一、通过EARFCN查询对应band 工作中经常遇到只知道EARFCN而需要计算band的情况&#xff0c;因此查了相关协议&#xff0c;找到了他们之间的对应关系&#xff0c;可以直接查表&#xff0c;非常方便。 具体见&#xff1a; 3GPP TS 36.101 5.7.3 Carrier frequency and EAR…...

解决问题:Docker证书到期(Error grabbing logs: rpc error: code = Unknown)导致无法查看日志

问题描述 Docker查看日志时portainer报错信息如下&#xff1a; Error grabbing logs: rpc error: code Unknown desc warning: incomplete log stream. some logs could not be retrieved for the following reasons: node klf9fdsjjt5tb0w4hxgr4s231 is not available报错…...

【C语言】预处理器

我们在开始编写一份程序的时候&#xff0c;从键盘录入的第一行代码&#xff1a; #include <stdio.h>这里就使用了预处理&#xff0c;引入头文件。 C预处理器不是编译器的组成部分&#xff0c;但是它是编译过程中一个单独的步骤。简言之&#xff0c;C预处理器只不过是一…...

QtConcurrent::run操作界面ui的注意事项(2)

前面的“QtConcurrent::run操作界面ui的注意事项&#xff08;1&#xff09;”&#xff0c;末尾说了跨线程的问题&#xff0c;引出了Qt千好万好&#xff0c;就是跨线程不好。下面是认为的最简单的解决办法&#xff1a;使用QMetaObject::invokeMethod&#xff08;相比较信号-槽&a…...

黑马程序员HarmonyOS4+NEXT星河版入门到企业级实战教程笔记

HarmonyOS NEXT是纯血鸿蒙&#xff0c;鸿蒙原生应用&#xff0c;彻底摆脱安卓 本课程是基于harmony os4的&#xff0c;与next仅部分api有区别 套件 语言&框架 harmony os design ArkTs 语言 ArkUI 提供各种组件 ArkCompiler 方舟编译器 开发&测试 DevEco Studio 开发…...

嵌入式全栈开发学习笔记---C语言笔试复习大全13(编程题9~16)

目录 9.查找字符数组中字符位置&#xff08;输入hello e 输出2&#xff09;&#xff1b; 10、查找字符数组中字符串的位置&#xff08;输入hello ll 输出3&#xff09;&#xff1b; 11、字符数组中在指定位置插入字符&#xff1b;&#xff08;输入hello 3 a 输出heallo…...

https网站安全证书的作用与免费申请办法

HTTPS网站安全证书&#xff0c;也称为SSL证书&#xff0c;网站通过申请SSL证书将http协议升级到https协议 HTTPS网站安全证书的作用 1 增强用户信任&#xff1a;未使用https协议的网站&#xff0c;用户访问时浏览器会有“不安全”弹窗提示 2 提升SEO排名&#xff1a;搜索引擎…...

自动化测试再升级,大模型与软件测试相结合

近年来&#xff0c;软件行业一直在迅速发展&#xff0c;为了保证软件质量和提高效率&#xff0c;软件测试领域也在不断演进。如今&#xff0c;大模型技术的崛起为软件测试带来了前所未有的智能化浪潮。 软件测试一直是确保软件质量的关键环节&#xff0c;但传统的手动测试方法存…...

centos7 基础命令

一、基础信息&#xff1a; 查看IP地址&#xff1a; ip add 重启网络服务&#xff1a; service network restart 查看网卡配置&#xff1a; cat /etc/sysconfig/network-scripts/ifcfg-ens33 启动网卡: ifup ens33 查看内存: free -m 查看CPU&#xff1a; cat /proc/cpuin…...

【设计模式】之单例模式

系列文章目录 【设计模式】之责任链模式【设计模式】之策略模式【设计模式】之模板方法模式 文章目录 系列文章目录 前言 一、什么是单例模式 二、如何使用单例模式 1.单线程使用 2.多线程使用&#xff08;一&#xff09; 3.多线程使用&#xff08;二&#xff09; 4.多线程使用…...

3d模型实体显示有隐藏黑线?---模大狮模型网

在3D建模和设计领域&#xff0c;细节决定成败。然而&#xff0c;在处理3D模型时&#xff0c;可能会遇到模型实体上出现隐藏黑线的问题。这些黑线可能影响模型的视觉质量和呈现效果。因此&#xff0c;了解并解决这些隐藏黑线的问题至关重要。本文将探讨隐藏黑线出现的原因&#…...

共享购:全新消费模式的探索与实践

在消费模式日益创新的今天&#xff0c;共享购模式以其独特的消费与收益双重机制&#xff0c;吸引了众多消费者的目光。这一模式不仅为消费者带来了全新的购物体验&#xff0c;也为商家和平台带来了可观的收益。 一、会员体系&#xff1a;共享购的基石 在共享购模式下&#xff…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

spring Security对RBAC及其ABAC的支持使用

RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型&#xff0c;它将权限分配给角色&#xff0c;再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...