LSTM递归预测(matlab)
LSTM(长短期记忆)递归预测原理及步骤详解如下:

一、LSTM递归预测原理
LSTM是一种特殊的递归神经网络(RNN),它能够学习长期依赖关系。传统的RNN在处理长序列时存在梯度消失和梯度爆炸的问题,导致无法有效捕捉长期依赖。LSTM通过引入“门”机制解决了这一问题,使得信息可以在网络中长时间传递而不会被遗忘。
LSTM的核心是LSTM细胞,它包含了三个门:遗忘门、输入门和输出门,以及一个记忆单元。这些门的作用如下:
- 遗忘门:决定从记忆单元中丢弃哪些信息。
- 输入门:决定哪些新的信息应该被存储在记忆单元中。
- 输出门:基于记忆单元的状态来决定当前LSTM细胞的输出。
在轨迹预测中,LSTM网络被训练为一个端到端的模型。当输入轨迹序列时,LSTM网络会自动学习前面的事件对后续事件的影响,并尝试预测未来的位置或状态。对于每个输入序列,LSTM都会生成一个预测输出,这个预测输出是从LSTM的输出门中获得的。
二、LSTM递归预测步骤
-
数据准备:
- 收集时间序列数据:根据预测任务的需求,收集相关的时间序列数据。
- 数据清洗:对收集到的数据进行预处理,包括去除噪声、缺失值填充等。
- 数据划分:将数据集划分为训练集、验证集和测试集。训练集用于训练模型,验证集用于调整超参数,测试集用于评估模型的性能。
-
构建LSTM模型:
- 确定模型结构:包括LSTM层的层数、隐藏单元数等。
- 初始化模型参数:包括权重和偏置项等。
- 选择损失函数和优化器:根据任务需求选择合适的损失函数和优化器。
-
训练模型:
- 将训练集输入到LSTM模型中,计算模型的输出和损失函数值。
- 通过反向传播算法计算梯度,并使用优化器更新模型参数。
- 重复上述步骤,直到模型在验证集上的性能达到预设的阈值或达到最大迭代次数。
-
验证模型:
- 将验证集输入到训练好的LSTM模型中,计算模型的预测结果和性能指标(如准确率、召回率等)。
- 根据验证结果调整模型结构或超参数,以获得更好的性能。
-
预测未来数据:
- 将测试集或新的时间序列数据输入到训练好的LSTM模型中,进行预测。
- 对预测结果进行后处理和分析,以提取有用的信息或做出决策。
-
可视化结果(可选):
- 将预测结果以图表或其他可视化形式展示,以便更直观地了解预测结果和性能。
- 部分代码
-
% 训练集和测试集划分 outdim = 1; % 最后一列为输出 num_size = 0.95; % 训练集占数据集比例 num_train_s = round(num_size * num_samples); % 训练集样本个数 f_ = size(res, 2) - outdim; % 输入特征维度P_train = res(1: num_train_s, 1: f_)'; T_train = res(1: num_train_s, f_ + 1: end)'; M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)'; T_test = res(num_train_s + 1: end, f_ + 1: end)'; N = size(P_test, 2);% 数据归一化 [p_train, ps_input] = mapminmax(P_train, 0, 1); p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1); t_test = mapminmax('apply', T_test, ps_output);% 格式转换 for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i); endfor i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i); end% 创建LSTM网络, layers = [ ...sequenceInputLayer(f_) % 输入层lstmLayer(55) reluLayer fullyConnectedLayer(outdim) % 回归层regressionLayer];
所采用数据集:
-
效果图
相关文章:

LSTM递归预测(matlab)
LSTM(长短期记忆)递归预测原理及步骤详解如下: LSTM递归预测(matlab)代码获取戳此处代码获取戳此处代码获取戳此处 一、LSTM递归预测原理 LSTM是一种特殊的递归神经网络(RNN),它能够…...

计算机网络 备查
OSI 七层模型 七层模型协议各层实现的功能 简要 详细 TCP/IP协议 组成 1.传输层协议 TCP 2.网络层协议 IP 协议数据单元(PDU)和 封装 数据收发过程 数据发送过程 1. 2.终端用户生成数据 3.数据被分段,并加上TCP头 4.网络层添加IP地址信息…...

查看软件包依赖关系
列出软件包依赖文件列表 rpm -ql 命令用于列出已安装软件包的文件列表。它显示软件包中包含的文件及其对应的路径。 具体来说,-q 选项表示查询已安装的软件包,而 -l 选项表示列出软件包中的文件列表。 例如,如果要查看已安装的 nginx 软件…...

C++ 中 strcmp(a,b) 函数的用法
【C 中 strcmp(a,b) 函数的用法】 ● 若 len(a)>len(b),则返回1。 ● 若 len(a)len(b),则返回0。 ● 若 len(a)<len(b),则返回-1。【C 中 strcmp(a,b) 函数的用法代码一】 #include <bits/stdc.h> using namespace std;int main…...

Servlet(一些实战小示例)
文章目录 一、实操注意点1.1 代码修改重启问题1.2 Smart Tomcat的日志1.3 如何处理错误 一. 抓自己的包二、构造一个重定向的响应,让页面重定向到百度主页三、让服务器返回一个html数据四、表白墙4.1 约定前后端数据4.2 前端代码4.3 后端代码4.4 保存在数据库的版本…...

【JVM】垃圾回收机制(Garbage Collection)
目录 一、什么是垃圾回收? 二、为什么要有垃圾回收机制(GC)? 三、垃圾回收主要回收的内存区域 四、死亡对象的判断算法 a)引用计数算法 b)可达性分析算法 五、垃圾回收算法 a)标记-清除…...

C++中的priority_queue模拟实现
目录 priority_queue模拟实现 priority_queue类定义 priority_queue构造函数 priority_queue类push()函数 priority_queue类pop()函数 priority_queue类size()函数 priority_queue类empty()函数 priority_queue类top()函数 仿函数与priority_queue类模拟实现 仿函数 …...

【Kafka】1.Kafka核心概念、应用场景、常见问题及异常
Kafka 是一个分布式流处理平台,最初由 LinkedIn 开发,后成为 Apache 软件基金会的顶级项目。 它主要用于构建实时数据管道和流式应用程序。它能够高效地处理高吞吐量的数据,并支持消息发布和订阅模型。Kafka 的主要用途包括实时分析、事件源、…...
LTE的EARFCN和band之间的对应关系
一、通过EARFCN查询对应band 工作中经常遇到只知道EARFCN而需要计算band的情况,因此查了相关协议,找到了他们之间的对应关系,可以直接查表,非常方便。 具体见: 3GPP TS 36.101 5.7.3 Carrier frequency and EAR…...

解决问题:Docker证书到期(Error grabbing logs: rpc error: code = Unknown)导致无法查看日志
问题描述 Docker查看日志时portainer报错信息如下: Error grabbing logs: rpc error: code Unknown desc warning: incomplete log stream. some logs could not be retrieved for the following reasons: node klf9fdsjjt5tb0w4hxgr4s231 is not available报错…...

【C语言】预处理器
我们在开始编写一份程序的时候,从键盘录入的第一行代码: #include <stdio.h>这里就使用了预处理,引入头文件。 C预处理器不是编译器的组成部分,但是它是编译过程中一个单独的步骤。简言之,C预处理器只不过是一…...

QtConcurrent::run操作界面ui的注意事项(2)
前面的“QtConcurrent::run操作界面ui的注意事项(1)”,末尾说了跨线程的问题,引出了Qt千好万好,就是跨线程不好。下面是认为的最简单的解决办法:使用QMetaObject::invokeMethod(相比较信号-槽&a…...

黑马程序员HarmonyOS4+NEXT星河版入门到企业级实战教程笔记
HarmonyOS NEXT是纯血鸿蒙,鸿蒙原生应用,彻底摆脱安卓 本课程是基于harmony os4的,与next仅部分api有区别 套件 语言&框架 harmony os design ArkTs 语言 ArkUI 提供各种组件 ArkCompiler 方舟编译器 开发&测试 DevEco Studio 开发…...

嵌入式全栈开发学习笔记---C语言笔试复习大全13(编程题9~16)
目录 9.查找字符数组中字符位置(输入hello e 输出2); 10、查找字符数组中字符串的位置(输入hello ll 输出3); 11、字符数组中在指定位置插入字符;(输入hello 3 a 输出heallo…...

https网站安全证书的作用与免费申请办法
HTTPS网站安全证书,也称为SSL证书,网站通过申请SSL证书将http协议升级到https协议 HTTPS网站安全证书的作用 1 增强用户信任:未使用https协议的网站,用户访问时浏览器会有“不安全”弹窗提示 2 提升SEO排名:搜索引擎…...

自动化测试再升级,大模型与软件测试相结合
近年来,软件行业一直在迅速发展,为了保证软件质量和提高效率,软件测试领域也在不断演进。如今,大模型技术的崛起为软件测试带来了前所未有的智能化浪潮。 软件测试一直是确保软件质量的关键环节,但传统的手动测试方法存…...

centos7 基础命令
一、基础信息: 查看IP地址: ip add 重启网络服务: service network restart 查看网卡配置: cat /etc/sysconfig/network-scripts/ifcfg-ens33 启动网卡: ifup ens33 查看内存: free -m 查看CPU: cat /proc/cpuin…...

【设计模式】之单例模式
系列文章目录 【设计模式】之责任链模式【设计模式】之策略模式【设计模式】之模板方法模式 文章目录 系列文章目录 前言 一、什么是单例模式 二、如何使用单例模式 1.单线程使用 2.多线程使用(一) 3.多线程使用(二) 4.多线程使用…...

3d模型实体显示有隐藏黑线?---模大狮模型网
在3D建模和设计领域,细节决定成败。然而,在处理3D模型时,可能会遇到模型实体上出现隐藏黑线的问题。这些黑线可能影响模型的视觉质量和呈现效果。因此,了解并解决这些隐藏黑线的问题至关重要。本文将探讨隐藏黑线出现的原因&#…...

共享购:全新消费模式的探索与实践
在消费模式日益创新的今天,共享购模式以其独特的消费与收益双重机制,吸引了众多消费者的目光。这一模式不仅为消费者带来了全新的购物体验,也为商家和平台带来了可观的收益。 一、会员体系:共享购的基石 在共享购模式下ÿ…...

Java集合 总结篇(全)
Java集合 集合底层框架总结 List 代表的有序,可重复的集合。 ArrayList -- 数组 -- 把他想象成C中的Vector就可以,当数组空间不够的时候,会自动扩容。 -- 线程不安全 LinkedList -- 双向链表 -- 可以将他理解成一个链表,不支持…...

Dubbo分层架构深度解析
引言 Dubbo作为一款备受欢迎的高性能、轻量级的Java RPC框架,在现代分布式系统中扮演着至关重要的角色。随着互联网行业的快速发展,服务间的通信变得越来越频繁,这也使得对于高效、可靠的远程通信方案的需求变得愈发迫切。在这样的背景下&am…...

LocalDate 数据库不兼容问题,因为LocalDate 是 long 类型的
我今天遇到一报错: SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession316f9272] was not registered for synchronization because synchronization is not active JDBC Connection [HikariProxyConnection2127597288 wrapping com.mysql.cj.jdbc…...

RVM(相关向量机)、CNN_RVM(卷积神经网络结合相关向量机)、RVM-Adaboost(相关向量机结合Adaboost)
当我们谈到RVM(Relevance Vector Machine,相关向量机)、CNN_RVM(卷积神经网络结合相关向量机)以及RVM-Adaboost(相关向量机结合AdaBoost算法)时,每种模型都有其独特的原理和结构。以…...

Java--方法的使用
1.1什么是方法 方法顾名思义就是解决问题的办法,在程序员写代码的时候,会遇到很多逻辑结构一样,解决相同问题时,每次都写一样的代码,这会使代码看起来比较绒余,代码量也比较多,为了解决这个问题…...

linux - 主次设备号自动申请
alloc_chrdev_region 原型如下,该函数向内核申请一个空闲的主设备号。 alloc_chrdev_region(&g_aputriger_dev, 0, APUTRIGER_MAX_NUM, "aputriger0"); 第四个参数是我们使用cat /proc/devices 看到的名称 /*** alloc_chrdev_region() - register a…...

我写了一套几乎无敌的参数校验组件!基于 SpEL 的参数校验组件「SpEL Validator」
前言 大家好,我是阿杆,不是阿轩。 参数校验这个东西,很多情况下都是比较简单的,用 NotNull、Size 等注解就可以解决绝大多数场景,但也有一些场景是这些基本注解解决不了的,只能用一些其他的方式处理&…...

输入序列太长 gan CGAN
transformer序列长度大导致计算复杂度高 GAN 2. 训练过程 第一阶段:固定「判别器D」,训练「生成器G」。使用一个性能不错的判别器,G不断生成“假数据”,然后给这个D去判断。开始时候,G还很弱,所以很容易被…...

uni-app scroll-view隐藏滚动条的小细节 兼容主流浏览器
开端 想写个横向滚动的列表适配浏览器,主要就是隐藏一下滚动条在手机上美观一点。 但是使用uni-app官方文档建议的::-webkit-scrollbar在目标标签时发现没生效。 .scroll-view_H::-webkit-scrollbar{display: none; }解决 F12看了一下,原来编译到浏览…...

Java常用API之LinkedList类解读
写在开头:本文用于作者学习我将官方文档中LinkedList 1.6版本中类中绝大部分API全测了一遍并打印了结果,日拱一卒,常看常新。 自己补充了一些对该数据结构的理解,如有不对的地方,请各位指正,谢谢。 首先&…...