今日总结2024/5/7
今日复习LIS二分优化的使用
P2782 友好城市
确定一边城市排序完后,另外一边满足坐标上升的最大数目即是桥的最大个数
为上升子序列模型
#include <iostream>
#include <algorithm>
#include <utility>
#define x first
#define y second
const int N=2e5+7;
using namespace std;
int n,g[N];//g来存坐标
typedef pair<int,int> PII;
PII c[N];
int main(){ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);cin>>n;for(int i=1;i<=n;i++) cin>>c[i].x>>c[i].y;sort(c+1,c+n+1);//按照南岸边排序int len=0;//北岸最长上升子序列长度for(int i=1;i<=n;i++){int pos=lower_bound(g+1,g+len+1,c[i].y)-g;g[pos]=c[i].y;len=max(len,pos);}cout<<len;return 0;
}
AcWing 1016. 最大上升子序列和
一个数的序列 bi当 b1<b2<…<bS 的时候,我们称这个序列是上升的。
对于给定的一个序列(a1,a2,…,aN),我们可以得到一些上升的子序列(ai1,ai2,…,aiK),这里1≤i1<i2<…<iK≤N
比如,对于序列(1,7,3,5,9,4,8),有它的一些上升子序列,如(1,7),(3,4,8)等等。
这些子序列中和最大为18,为子序列(1,3,5,9)的和。
你的任务,就是对于给定的序列,求出最大上升子序列和。
注意,最长的上升子序列的和不一定是最大的,比如序列(100,1,2,3)的最大上升子序列和为100,而最长上升子序列为(1,2,3)。
对比上升子序列,即是把长度改为求和即可
#include <iostream>
const int N=1e3+5;
using namespace std;
int a[N],f[N];int main(){ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);int n;cin>>n;for(int i=0;i<n;i++) cin>>a[i];int res=0;for(int i=0;i<n;i++){f[i]=a[i];for(int j=0;j<i;j++)if(a[i]>a[j])f[i]=max(f[i],f[j]+a[i]);res=max(f[i],res);}cout<<res;return 0;
}
相关文章:
今日总结2024/5/7
今日复习LIS二分优化的使用 P2782 友好城市 确定一边城市排序完后,另外一边满足坐标上升的最大数目即是桥的最大个数 为上升子序列模型 #include <iostream> #include <algorithm> #include <utility> #define x first #define y second cons…...

爬虫学习(3)豆瓣电影
代码 import requests import jsonif __name__ "__main__":url https://movie.douban.com/j/chart/top_list#post请求参数处理(同get请求一致)headers {"User-Agent": Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/53…...

GNU Radio创建FFT、IFFT C++ OOT块
文章目录 前言一、GNU Radio官方FFT弊端二、创建自定义的 C OOT 块1、创建 OOT 模块2、创建 OOT 块3、修改 C 和 CMAKE 文件4、编译及安装 OOT 块 三、测试1、grc 图2、运行结果①、时域波形对比②、频谱图对比 四、资源自取 前言 GNU Radio 自带的 FFT 模块使用起来不是很方便…...

125.两两交换链表中的节点(力扣)
题目描述 代码解决及思路 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr) {}* ListNode(int x, ListNode *next) : val(x), …...
APP精准推送广告是怎么做到的?
你有没有遇到这种情况,刚和家人聊起五一去哪玩,各种软件就刷到各地旅游景点。刚和朋友说到健身计划,转眼间网购平台就给你推荐各种健身用品,这些软件是如何知道我们的需求,难道我们的手机被监听了?从技术上…...

RapidJSON介绍
1.简介 RapidJSON 是一个 C 的 JSON 解析库,由腾讯开源。 支持 SAX 和 DOM 风格的 API,并且可以解析、生成和查询 JSON 数据。RapidJSON 快。它的性能可与strlen() 相比。可支持 SSE2/SSE4.2 加速。RapidJSON 独立。它不依赖于 BOOST 等外部库。它甚至…...

大型企业总分支多区域数据传输,效率为先还是安全为先?
大型企业为了业务拓展需要,会在全国乃至全球各地设立分公司和办事机构,以便更好地处理当地事务,并进行市场的开拓和客户维护,此时,企业内部就衍生出了新的业务需求,即多区域数据传输。 多区域很难准确定义&…...

C语言例题35、反向输出字符串(指针方式),例如:输入abcde,输出edcba
#include <stdio.h>void reverse(char *p) {int len 0;while (*p ! \0) { //取得字符串长度p;len;}while (len > 0) { //反向打印到终端printf("%c", *--p);len--;} }int main() {char s[255];printf("请输入一个字符串:");gets(s)…...

场景文本检测识别学习 day09(Swin Transformer论文精读)
Patch & Window 在Swin Transformer中,不同层级的窗口内部的补丁数量是固定的,补丁内部的像素数量也是固定的,如上图的红色框就是不同的窗口(Window),窗口内部的灰色框就是补丁(Patch&#…...

抖音小店个人店和个体店有什么不同?区别问题,新手必须了解!
哈喽~我是电商月月 新手开抖音小店入驻时会发现,选择入驻形式时有三个选择,个人店,个体店和企业店 其中,个人店和个体店只差了一个字,但个人店不需要营业执照,是不是入驻时选择个人店会更好一点呢&#x…...
动态规划入门和应用示例
文章目录 前言斐波那契数列爬楼梯总结优点:缺点: 前言 动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的数学方法。它主要用于解决一类具有重叠子问题和最优子结构性质的问题。…...

【C语言】精品练习题
目录 题目一: 题目二: 题目三: 题目四: 题目五: 题目六: 题目七: 题目八: 题目九: 题目十: 题目十一: 题目十二: 题目十…...

数据库(MySQL)—— DML语句
数据库(MySQL)—— DML语句 什么是DML语句添加数据给全部字段添加数据批量添加数据 修改数据删除数据 什么是DML语句 在MySQL中,DML(Data Manipulation Language,数据操纵语言)语句主要用于对数据库中的数…...

【最大公约数 并集查找 调和级数】1998. 数组的最大公因数排序
本文涉及知识点 最大公约数 并集查找 调和级数 LeetCode1998. 数组的最大公因数排序 给你一个整数数组 nums ,你可以在 nums 上执行下述操作 任意次 : 如果 gcd(nums[i], nums[j]) > 1 ,交换 nums[i] 和 nums[j] 的位置。其中 gcd(nums…...

iOS实现一个高性能的跑马灯
效果图 该跑马灯完全通过CATextLayer 实现,轻量级,并且通过 系统的位移动画实现滚动效果,避免了使用displaylink造成的性能瓶颈,使用系统动画,系统自动做了很多性能优化,实现更好的性能,并使用…...
MySQL的视图、存储过程、触发器
视图 介绍 视图是一种虚拟存在的表。视图中的数据并不在数据库中实际存在,行和列数据来自定义视图的查询中使用的表,并且是在使用视图时动态生成的。通俗的讲,视图只保存了查询的SQL逻辑,不保存查询结果。所以我们在创建视图的时…...
【图像特征点匹配】
图像特征点匹配 图像特征点匹配是计算机视觉中的一项关键技术,它涉及在两个或多个图像之间寻找并匹配具有独特属性的点,这些点被称为特征点。 立体视觉:通过匹配同一场景的不同视角图像中的特征点,可以重建场景的三维结构。物体识别:通过匹配物体表面的特征点,可以识别和…...
GZIPOutputStream JSON压缩
一、背景 小王瞥了一眼历史记录表,不禁惊呼:“这表怎么这么大?”同事们闻声纷纷围拢过来查看。仔细一瞧,发现这个表的大小竟然超过了3G。主管随即指示小王打开相应的表数据检查,发现其中存储了用户的权限信息…...

毫米波雷达原理(含代码)(含ARS548 4D毫米波雷达数据demo和可视化视频)
毫米波雷达原理 1. 传统毫米波雷达1.1 雷达工作原理1.2 单目标距离估计1.3 单目标速度估计1.4 单目标角度估计1.5 多目标距离估计1.6 多目标速度估计1.7多目标角度估计1.7 总结 3. FMCW雷达数据处理算法4. 毫米波雷达的目标解析(含python代码)5. ARS548 4D毫米波雷达数据demo(含…...
3.1 Gateway之路由请求和转发
1.依赖坐标 <!--网关--><dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-gateway</artifactId></dependency><!--服务注册和发现--><dependency><groupId>com.alibab…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...

JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
k8s从入门到放弃之HPA控制器
k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率(或其他自定义指标)来调整这些对象的规模,从而帮助应用程序在负…...
书籍“之“字形打印矩阵(8)0609
题目 给定一个矩阵matrix,按照"之"字形的方式打印这个矩阵,例如: 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为:1,…...

一些实用的chrome扩展0x01
简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序,无论是测试应用程序、搜寻漏洞还是收集情报,它们都能提升工作流程。 FoxyProxy 代理管理工具,此扩展简化了使用代理(如 Burp…...