当前位置: 首页 > news >正文

OPENAI中Semantic Kernel实现原理以及示例代码用PYTHON来实现

OPENAI中Semantic Kernel实现原理以及示例代码用PYTHON来实现

前言

在人工智能领域,自然语言处理是一个非常重要的研究方向。而在自然语言处理中,语义理解是一个非常关键的问题。在这个领域中,OPENAI的Semantic Kernel是一个非常有名的工具,
它可以帮助我们实现自然语言的语义理解。本文将介绍Semantic Kernel的实现原理,并提供一个用Python实现的示例代码。

Semantic Kernel的实现原理

Semantic Kernel是OPENAI中的一个重要组件,它的主要作用是将自然语言转化为语义表示。在实现过程中,Semantic Kernel主要包括以下几个步骤:

  1. 分词:将自然语言分解成一个个单词,这个过程可以使用现有的分词工具来实现。

  2. 词性标注:对每个单词进行词性标注,这个过程可以使用现有的词性标注工具来实现。

  3. 依存句法分析:对句子进行依存句法分析,得到每个单词之间的依存关系。这个过程可以使用现有的依存句法分析工具来实现。

  4. 语义角色标注:对每个单词进行语义角色标注,得到每个单词在句子中的语义角色。这个过程可以使用现有的语义角色标注工具来实现。

  5. 语义表示:根据分词、词性标注、依存句法分析和语义角色标注的结果,生成句子的语义表示。这个过程是Semantic Kernel的核心部分,它使用了一些自然语言处理的技术,如词向量、神经网络等。

用Python实现Semantic Kernel

在Python中,我们可以使用一些现有的自然语言处理工具来实现Semantic Kernel。下面是一个示例代码,它使用了NLTK和Stanford CoreNLP来实现Semantic Kernel。

import nltk
from nltk.parse import CoreNLPParser
from nltk.tree import ParentedTree# 初始化Stanford CoreNLPParser
parser = CoreNLPParser(url='http://localhost:9000')# 分词
def tokenize(sentence):return list(parser.tokenize(sentence))# 词性标注
def pos_tag(tokens):return list(parser.tag(tokens))# 依存句法分析
def dependency_parse(sentence):return list(parser.dependency_parse(sentence))# 语义角色标注
def semantic_role_labeling(sentence):# 初始化Stanford CoreNLPParserparser = CoreNLPParser(url='http://localhost:9000', tagtype='ner')# 获取句子的语义角色标注结果result = parser.api_call(sentence, properties={'annotators': 'tokenize,ssplit,pos,lemma,parse,depparse,ner,relation,coref,kbp,quote','outputFormat': 'json'})# 解析结果roles = []for sentence in result['sentences']:for token in sentence['tokens']:if 'entitymentions' in token:for mention in token['entitymentions']:roles.append((mention['text'], mention['ner']))return roles# 语义表示
def semantic_representation(sentence):# 分词tokens = tokenize(sentence)# 词性标注pos_tags = pos_tag(tokens)# 依存句法分析dependencies = dependency_parse(sentence)# 语义角色标注roles = semantic_role_labeling(sentence)# 生成语义表示representation = []for i in range(len(tokens)):token = tokens[i]pos_tag = pos_tags[i][1]dependency = dependencies[i]role = Nonefor r in roles:if r[0] == token:role = r[1]breakrepresentation.append((token, pos_tag, dependency[0], dependency[1], role))return representation# 示例
sentence = 'I want to buy a book.'
representation = semantic_representation(sentence)
print(representation)

在上面的示例代码中,我们使用了NLTK和Stanford CoreNLP来实现Semantic Kernel。具体来说,我们使用了CoreNLPParser来进行分词、词性标注、依存句法分析和语义角色标注,然后根据这些结果生成了句子的语义表示。

总结

Semantic Kernel是OPENAI中的一个重要组件,它可以帮助我们实现自然语言的语义理解。在实现过程中,Semantic Kernel主要包括分词、词性标注、依存句法分析、语义角色标注和语义表示等步骤。在Python中,我们可以使用一些现有的自然语言处理工具来实现Semantic Kernel。本文提供了一个用Python实现Semantic Kernel的示例代码,希望对大家有所帮助。

相关文章:

OPENAI中Semantic Kernel实现原理以及示例代码用PYTHON来实现

OPENAI中Semantic Kernel实现原理以及示例代码用PYTHON来实现 前言 在人工智能领域,自然语言处理是一个非常重要的研究方向。而在自然语言处理中,语义理解是一个非常关键的问题。在这个领域中,OPENAI的Semantic Kernel是一个非常有名的工具…...

关于路由懒加载的实现

在Vue2中,实现路由懒加载可以使用import的动态引入方式。通常,我们可以将组件作为被引入的模块,并在routes配置中使用component: () > import(/components/Example.vue)来实现懒加载。 在Vue3中,懒加载的实现方式稍有不同。Vu…...

如何去官网下载windows10操作系统iso镜像

文章目录 一、先从微软中国官网https://www.microsoft.com/zh-cn/进去二、然后按图示一步步点进去三、点击下载工具这个工具会帮你生成windows操作系统iso文件四、下载好后一步步按图示要求成功操作 一、先从微软中国官网https://www.microsoft.com/zh-cn/进去 二、然后按图示一…...

JavaScript中如何实现函数缓存,函数缓存有哪些应用场景

函数缓存就是将函数运算的结果进行缓存。 本质上是利用空间换时间。 常用于缓存数据计算结果和缓存对象。缓存只是一个临时的数据存储,它保存数据,为了方便将来对该数据的请求时,可以更快的得到处理。 缓存函数 实现一个缓存函数&#xf…...

以中国为目标的DinodasRAT Linux后门攻击场景复现

概述 在上一篇《以中国为目标的DinodasRAT Linux后门剖析及通信解密尝试》文章中,笔者对DinodasRAT Linux后门的功能及通信数据包进行了简单剖析,实现了对DinodasRAT Linux后门心跳数据包的解密尝试。 虽然目前可对DinodasRAT Linux后门的通信数据包进…...

Day 24 数据库管理及数据类型

数据库管理及数据类型 一:数据类型 1.数值类型 整数类型 ​ 整数类型:TINYINT SMALLINT MEDIUMINT INT BIGINT ​ 作用:用于存储用户的年龄、游戏的Level、经验值等 浮点数类型 ​ 浮点数类型:FLOAT DOUBLE ​ 作用&#xf…...

MAC 本地搭建Dify环境

Dify 介绍 Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过…...

vue3使用tsx/jsx时报错:JSX 元素隐式具有类型 “any“,因为不存在接口 “JSX.IntrinsicElements“。

vue3使用tsx/jsx时报错:JSX 元素隐式具有类型 "any",因为不存在接口 "JSX.IntrinsicElements"。 在项目中安装:npm install types/react npm install types/react...

卷价格不如卷工艺降本增效狠抓模块规范化设计

俗话说,“卷价格不如卷工艺”,这意味着在追求成本控制和效率提升的过程中,蓝鹏的领导认为蓝鹏应该更注重工艺的优化和创新,而不仅仅是价格的竞争。而模块规范化设计正是实现这一目标的有效途径。 模块规范化设计可以提高生产效率…...

[报错解决]Failed to load driver class oracle.jdbc.OracleDriver

目录 报错信息解决 报错信息 // 关键报错信息 java.lang.IllegalStateException: Failed to load ApplicationContextCaused by: java.lang.reflect.InvocationTargetExceptionat sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)at sun.reflect.NativeMethodAcc…...

前端科举八股文-CSS篇

前端科举面经-CSS篇 Css选择器的优先级css盒模型行内元素和块级元素的区别?link标签和import标签的区别讲一下弹性盒子布局的常见属性flex是哪三个属性的简写什么是BFC? 有什么作用垂直居中的方法?visibilityhidden, opacity0,display:none的区别清除浮…...

tracert命令

Tracert(跟踪路由)是路由跟踪实用程序,用于确定IP数据报访问目标所采取的路径。Tracert命令用IP生存时间(TTL)字段和ICMP错误消息,来确定从一个主机到网络上其他主机的路由。 命令格式:tracert …...

goget配置多个golang 运行环境

一台主机安装多个golang 运行环境 本环境 windows10 为 基础 mac linux也可以按照此方法操作 背景 开发不同的运维工具会用到不同版本的golang,但是开发者不能一直进行重装来处理 ,因此 需要一个工具进行golang版本的管理 go管理工具介绍 gvm (Go V…...

小程序预览或上传代码时,遇到app.json未找到某个wxml文件的解决方法

uniapp小程序,点击预览或者是上传代码,遇到app.json无法找到某个wxml文件的解决方法:清缓存 问题: message:Error: app.json: 未找到 ["subPackages"][3]["pages"][3] 对应的 subPackages4/pages/…...

VUE v-for 数据引用

VUE 的数据引用有多种方式。 直接输出数据 如果我们希望页面中直接输出数据就可以使用: {{ pageNumber }}双括号引用的方式即可。 在 JavaScript 中引用 如果你需要直接在代码中使用,直接使用变量名就可以了。 上面这张小图,显示了引用的…...

嵌入式linux学习第一天

参考正点原子Linux开发文档。记录下知识点。 Shell 基本操作 前面我们说 Shell 就是“敲命令”,那么既然是命令,那肯定是有格式的,Shell 命令的格式 如下: command -options [argument] command: Shell 命令名称。 options&…...

基于Springboot的教学辅助系统(有报告)。Javaee项目,springboot项目。

演示视频: 基于Springboot的教学辅助系统(有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构&…...

CentOS7编译安装freeswitch1.10.11

由于 FreeSWITCH 更新非常快,请自己查找最新的版本,如,截止 2022年6月4日,最稳定的发行版是:1.10.11 下载源代码: wget https://files.freeswitch.org/freeswitch-releases/freeswitch-1.10.11.-release.…...

网络知识点之—QoS

QoS(Quality of Service,服务质量)指一个网络能够利用各种基础技术,为指定的网络通信提供更好的服务能力,是网络的一种安全机制, 是用来解决网络延迟和阻塞等问题的一种技术。QoS的保证对于容量有限的网络来…...

LeetCode 每日一题 ---- 【741.摘樱桃】

LeetCode 每日一题 ---- 【741.摘樱桃】 741.摘樱桃方法:动态规划 741.摘樱桃 方法:动态规划 这是一道动态规划的题目,enmmmm,依旧是做不出来,尤其是看到困难两个标红的字体,就更不想做了,然后…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"&#xff0…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

C++_哈希表

本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说,直接开始吧! 一、基础概念 1. 哈希核心思想: 哈希函数的作用:通过此函数建立一个Key与存储位置之间的映射关系。理想目标:实现…...

STM32标准库-ADC数模转换器

文章目录 一、ADC1.1简介1. 2逐次逼近型ADC1.3ADC框图1.4ADC基本结构1.4.1 信号 “上车点”:输入模块(GPIO、温度、V_REFINT)1.4.2 信号 “调度站”:多路开关1.4.3 信号 “加工厂”:ADC 转换器(规则组 注入…...

基于stm32F10x 系列微控制器的智能电子琴(附完整项目源码、详细接线及讲解视频)

注:文章末尾网盘链接中自取成品使用演示视频、项目源码、项目文档 所用硬件:STM32F103C8T6、无源蜂鸣器、44矩阵键盘、flash存储模块、OLED显示屏、RGB三色灯、面包板、杜邦线、usb转ttl串口 stm32f103c8t6 面包板 …...

深入理解 React 样式方案

React 的样式方案较多,在应用开发初期,开发者需要根据项目业务具体情况选择对应样式方案。React 样式方案主要有: 1. 内联样式 2. module css 3. css in js 4. tailwind css 这些方案中,均有各自的优势和缺点。 1. 方案优劣势 1. 内联样式: 简单直观,适合动态样式和…...

Copilot for Xcode (iOS的 AI辅助编程)

Copilot for Xcode 简介Copilot下载与安装 体验环境要求下载最新的安装包安装登录系统权限设置 AI辅助编程生成注释代码补全简单需求代码生成辅助编程行间代码生成注释联想 代码生成 总结 简介 尝试使用了Copilot,它能根据上下文补全代码,快速生成常用…...