当前位置: 首页 > news >正文

力扣每日一题108:将有序数组转换为二叉搜索树

题目

简单

给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 

平衡

 二叉搜索树。

示例 1:

输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:

示例 2:

输入:nums = [1,3]
输出:[3,1]
解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。

提示:

  • 1 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • nums 按 严格递增 顺序排列

面试中遇到过这道题?

1/5

通过次数

471.9K

提交次数

601.7K

通过率

78.4%

思路

平衡二叉搜索树有两个要求

1、每个节点左右子树的高度差不能超过1

2、每个节点的大于所有左子树结点,小于所有右子树结点。

要满足第一个条件的话,我们可以递归建树,每次将中间的值作为根节点,然后递归调用左右两部分。

要满足第二个条件,只需将root->left指向左边部分递归的结果,root->right指向右边部分递归的结果即可。

代码

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:TreeNode *creat(int lo,int hi,vector<int>& nums){if(lo>hi) return NULL;int mid=(lo+hi)/2;TreeNode *root=new TreeNode;root->val=nums[mid];root->left=creat(lo,mid-1,nums);root->right=creat(mid+1,hi,nums);return root;}TreeNode* sortedArrayToBST(vector<int>& nums) {int lo=0,hi=nums.size()-1;TreeNode *root=creat(lo,hi,nums);return root;}
};

相关文章:

力扣每日一题108:将有序数组转换为二叉搜索树

题目 简单 给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 平衡 二叉搜索树。 示例 1&#xff1a; 输入&#xff1a;nums [-10,-3,0,5,9] 输出&#xff1a;[0,-3,9,-10,null,5] 解释&#xff1a;[0,-10,5,null,-3,null,9] 也…...

保护公司机密:避免员工带着数据说拜拜

公司的核心资产之一就是数据。无论是客户信息、研发代码、内部决议、财务报告、商业合同、设计图纸等都是公司的重要资产。如果这些数据在员工离职时被带走&#xff0c;或在员工在职期间不当行为导致数据泄露&#xff0c;将给公司带来重大损失。 然而&#xff0c;保护这些数据…...

kali apt update报错

错误信息&#xff1a; 获取&#xff1a;http:/dl.google.com/几inux/chrome/.deb stable InRelease 错误&#xff1a;http:/dl.google.com/linux/chrome/deb stable InRelease 由于没有公钥&#xff0c;无法验证下列签名&#xff1a;NO_PUBKEY4EB27DB2A3B88B8B 命中&#xff1a…...

7-1 图图图

某城市有n个景点&#xff0c;部分景点之间有巴士免费来回接送。(1) 给定某个景点x&#xff0c;如果从这个景点出发坐一次免费巴士&#xff0c;可以到达多少个不同的景点&#xff1f;(2) 判断景点a是否可以通过免费巴士&#xff08;可换乘&#xff09;到达景点b&#xff1b;(3) …...

Java(多线程)

取水&#xff1a; 主部分&#xff1a; package a0506.Test3;import java.util.Random;public class Test3 {public static void main(String[] args) {Well2 well2new Well2(10);WellThread Zsnew WellThread("------张三------",well2,new Random().nextInt(5));W…...

程序员必备的7大神器,效率飞起!

我们都知道程序员在工作时&#xff0c;会经常遇到任务繁重的情况&#xff0c;为了提高效率&#xff0c;程序员们也会借助一些软件&#xff0c;那么哪些软件可以帮助程序员们提高工作效率呢&#xff1f; 整理不易&#xff0c;关注一波&#xff01;&#xff01; 1. Xftp 7 Xft…...

揭秘文件加密利器:24年度最值得信赖的5大加密软件评测

数据安全与隐私保护已成为我们每个人都必须面对的重要问题。 文件加密软件作为保障数据安全的关键工具&#xff0c;其重要性不言而喻。 在众多的加密软件中&#xff0c;哪些软件能够在保障数据安全的同时&#xff0c;又具备良好的易用性和稳定性呢&#xff1f; 本文将为您揭秘…...

【仪酷LabVIEW AI工具包案例】使用LabVIEW AI工具包+YOLOv5结合Dobot机械臂实现智能垃圾分类

‍‍&#x1f3e1;博客主页&#xff1a; virobotics(仪酷智能)&#xff1a;LabVIEW深度学习、人工智能博主 &#x1f384;所属专栏&#xff1a;『仪酷LabVIEW AI工具包案例』 &#x1f4d1;上期文章&#xff1a;『【YOLOv9】实战二&#xff1a;手把手教你使用TensorRT实现YOLOv…...

鸿蒙应用开发系列 EX篇:HarmonyOS应用开发者基础认证

文章目录 系列文章背景认证考试题库参考注意:题库会不定时的进行具备调整甚至整体轮换,此为2024.5月版本注意:题库中题目的选项每次都会随机顺序,请参考内容判断题单选题多选题系列文章 鸿蒙应用开发系列 篇一:鸿蒙系统概述 鸿蒙应用开发系列 篇二:鸿蒙系统开发工具与环…...

基于Linux中的 进程相关知识 综合讲解

目录 一、进程的基本概念 二、pid&#xff0c;ppid&#xff0c;fork函数 三、进程的状态讲解 四、进程的优先级 五、完结撒❀ 一、进程的基本概念 概念&#xff1a; ● 课本概念&#xff1a;程序的一个执行实例&#xff0c;正在执行的程序等 ● 内核观点&#xff1a;担当…...

前端高频面试题 5.08

事件委托 事件委托是前端开发中常用的一种优化性能和代码可维护性的方法&#xff0c;它基于DOM的事件冒泡机制。当一个元素触发事件时&#xff0c;这个事件会按照从顶层到底层的顺序传播&#xff0c;直到最底层的元素&#xff08;通常是文档的根节点&#xff09;。事件委托利用…...

python 的继承、封装和多态

1. 继承&#xff08;Inheritance&#xff09; 继承是面向对象编程中的一个重要概念&#xff0c;它允许一个类&#xff08;子类&#xff09;继承另一个类&#xff08;父类&#xff09;的属性和方法。子类可以重用父类的代码&#xff0c;同时也可以扩展或修改父类的行为。 常用…...

数智结合,智慧合同让法务管理发挥内在价值

在当今这个信息化、数字化飞速发展的时代&#xff0c;数据已成为企业重要的战略资源。法务管理作为企业内部控制和风险防范的重要环节&#xff0c;其重要性不言而喻。然而&#xff0c;传统的法务管理模式往往存在效率低下、信息孤岛、反应迟缓等问题。在这样的背景下&#xff0…...

Ubuntu 安装docker

1: 卸载旧版本 如果你曾经安装过旧版本的 Docker&#xff0c;首先需要卸载它们&#xff1a; sudo apt-get remove docker docker-engine docker.io containerd runc2: 安装依赖工具 安装一些必要的工具&#xff0c;以便后续的安装过程能够顺利进行&#xff1a; sudo apt-ge…...

【北京迅为】《iTOP-3588开发板快速烧写手册》-第8章 TF启动

RK3588是一款低功耗、高性能的处理器&#xff0c;适用于基于arm的PC和Edge计算设备、个人移动互联网设备等数字多媒体应用&#xff0c;RK3588支持8K视频编解码&#xff0c;内置GPU可以完全兼容OpenGLES 1.1、2.0和3.2。RK3588引入了新一代完全基于硬件的最大4800万像素ISP&…...

Helm 模板流程控制

Helm 的模板语言提供了多种控制结构&#xff0c;以允许模板作者根据条件逻辑生成模板内容。以下是 Helm 模板控制结构的核心内容总结&#xff1a; 控制结构 Helm 模板支持以下控制结构&#xff1a; if/else&#xff1a;用于创建条件语句&#xff0c;根据给定的条件包含或排除…...

Kansformer?变形金刚来自过去的新敌人

​1.前言 多层感知器(MLPs),也被称为全连接前馈神经网络,是当今深度学习模型的基础组成部分。 MLPs在机器学习中扮演着至关重要的角色,因为它们是用于近似非线性函数的默认模型,这得益于通用近似定理所保证的表达能力。然而,MLPs真的是我们能构建的最佳非线性回归器吗?尽管ML…...

今晚 19:00 | 从这两个问题入手,带你了解数据要素相关税务问题

五一假期已经结束&#xff0c;返工后当然是继续劳动啦~数据要素系列直播《星光对话》第三期也将在今晚19:00&#xff0c;继续跟大家见面。 本期直播&#xff0c;依然由 星光数智咨询总监 刘靖 主讲&#xff0c;带来&#xff1a;《数据要素相关税务问题解读》。 主要围绕两个问题…...

《QT实用小工具·五十一》带动画的 CheckBox

1、概述 源码放在文章末尾 该项目实现了带动画效果的多选框&#xff0c;鼠标放在上面或者选中都会呈现炫酷的动画效果&#xff0c;demo演示如下&#xff1a; 项目部分代码如下所示&#xff1a; #ifndef LINEARCHECKBOX_H #define LINEARCHECKBOX_H#include <QCheckBox> …...

PDT(police digital trunking )警用数字集群射频指标及测试方法

天线端口----测试传导 机箱端口----测试辐射 基本概念 传导测试方法 VBW3RBW 仪器设置 辐射测试方法...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...