当前位置: 首页 > news >正文

matlab例题大全

1.第1章  MATLAB系统环境

1.1

注:plot函数为画图函数。例plot(x1,y1,':',x2,y2,'*');

1.2

注:root为求根函数。p为方程变量前面系数矩阵。

1.3

注:

2*x+3y-1*z = 2;

8*x+2*y+3*z = 4;

45*x+3*y+9*z = 23

求:x,y,z的值

注:inv为求逆函数。

1.4

注:@(x)是匿名函数,这个x是可以被使用的,理解如下:

2.第2章  MATLAB数据及其运算

2.1

2.2

注:rem(A,3)的结果如果为0,返回1,负责返回0。

2.3

注:字符串可以像数组一样被应用。由于ch(k)=ch(k)-('a'-'A')结果为对应的ascci码值,所以后面要使用char函数,变回字符串。如下

3. 第3章  MATLAB矩阵分析与处理

3.1

注:magic(a),生成大大小为a*a的矩阵,并且行和列之和一样。

3.2

注:

D*A,由线性代数知识可知,D的第一行乘以A的第一列放在第一个,依此类推。

3.3

注:(1)b=[5,-2,6]‘,是行向量的转置变成列向量。

        (2)inv函数为取逆函数。

补充:

(1)det函数为求矩阵行列式。

(2)rank函数为求矩阵的秩。

(3)trace函数为求矩阵的迹。

(4)norm函数为求矩阵范数。

(4)eig函数求矩阵的特征向量和特征值。

4.第4章  MATLAB程序流程控制

4.1

法一:使用脚本

法二:使用函数(调用函数时,用使用函数文件名)

4.2

注:使用input函数输入a,b,c的值,使用求根公式(-b+sqrt(b^2-4*a*C))/(2*a)求出根。

4.3

4.4

注:可以将所有的setstr换成char,一样的效果。

4.5

注:在switch case语句中,如果case的值同时为多个时,使用元胞数组{}。

4.6

注:fix为取整函数,rem为取余函数。

4.7

法1:

法2:

注:将1~n放在一个变量里面变成行向量,同时对这个行向量进行操作。

4.8

注:将整块面积分割成若干个小矩形。

4.9 *

注:a为4*3的矩阵,k=a,k一次取一列,所以一共取3次。

4.10

注:变量sum为所以数之和,sum/n是平均数。

4.11

注:

(1)continue为跳过一次循环中的其他语句,进行下一次循环。

(2)break为跳出整个循环。

4.12

4.13

注:nargin为函数输入时的变量个数。

5.第5章  MATLAB绘图

5.1

注:

5.2

5.3

5.4

5.5

5.6

注:plotyy函数可以将不同的量纲的函数放在统一坐标下。

5.7

5.8

注:subplot函数对窗口进行分割。

补充:

(1)

(2)

(3)

(4)

注;选项为stacked或grouped

(5)

5.9

注:给1为突出,给0为不突出

5.10

5.11

注:meshgrid画网格线

5.12

5.13

5.14

6.第6章  MATLAB数据分析与多项式计算

6.1

注:max函数为求最大值函数。max(a)求每一列的最大值,max(a,[],2)求每一行的最大值。

6.2

6.3

注:

(1)sum为求和函数,sum(a,1)为按列求和。sum(a,2)为按行求和。

(2)prod函数为求乘函数,用法与sum一样。

(3)mean函数为求平均值函数,用法与sum一样。

(4)cumsum函数为累加和函数,用法与sum一样。

(5)cumprod函数为累积和函数,用法和sum一样。

6.4

6.5

6.6

注:corrcoef函数为求相关系数函数,

6.7

注:sort为排序函数

6.8

注:多项式加法时,前一项最高次和后一项最高次不同时,较低的需要将高次补0直到与前一项最高次相同,以便于计算。

6.9

注:conv函数用于求多项式之间的乘积。

6.10

注:deconv函数用于多项式之间的除法。

6.11

注:polyder函数用于多项式的求导。

6.12

注:polyval为代数多项式函数,求指定的x时的y值

补充:polyvalm函数为求代数矩阵多项式。与polyval不同的是:

6.13

注:

(1)roots为求多项式根函数

(2)roots求出来的值,带入poly函数可以求出原函数。

6.14

对比:结果与原函数差一个系数3。

6.15

注:interp1为一维插值函数。

其中,X,Y为需要被插值函数的x和y,X1是你需要插值的点,method为你选择的插值方式:

补充:interp2为二维插值函数,其插值模式与interp2一样。

6.16

注:在指定点处插值

(1)interp2(x,y,Z,0.5,0.5),在(0.5,0.5)处插值

(2)interp2(x,y,Z,[0.5,0.6],0.4),在(0.5,0.4)和(0.6,0.4)处插值

(3)interp2(x,y,Z,[0.5,0.6],[0.4,0.5]),在(0.5,0.4)和(0.6,0.5)处插值

(4)interp2(x,y,Z,[0.5,0.6]’,[0.4,0.5]),在(0.5,0.4)和(0.5,0.5)和(0.6,0.5)和(0.6,0.4)处插值。

找规律,当为两个大小相同的行向量时,一个行向量的x仅仅与另一个行向量的y值对应。当一个为行向量一个为列向量时,一个行向量的x值与另一个列向量的所有y对应。

6.17*

注:这个的t和ti都为列向量都是因为需要编制二维模型,只有一个为u行向量一个为列向量时才可以实现,所以要取反。

6.18

注:

(1)linspace(0,2*pi,50)等价于 0:50/pi:2*pi,用于创建数据

(2)polyfit为拟合函数,用于通过已知条件来预测给定点的值。

相关文章:

matlab例题大全

1.第1章 MATLAB系统环境 1.1 注:plot函数为画图函数。例plot(x1,y1,:,x2,y2,*); 1.2 注:root为求根函数。p为方程变量前面系数矩阵。 1.3 注: 2*x3y-1*z 2; 8*x2*y3*z 4; 45*x3*y9*z 23 求:x,y,z的…...

SwiGLU激活函数

SwiGLU激活函数已经成为LLM的标配了。它是GLU的变体,公式如下: SwiGLU ⁡ ( x , W , V , b , c , β ) Swish ⁡ β ( x W b ) ⊗ ( x V c ) \operatorname{SwiGLU}(x, W, V, b, c, \beta)\operatorname{Swish}_\beta(x Wb) \otimes(x Vc) SwiGLU(x,…...

MySQL慢查询优化

当需要优化MySQL的慢查询时,通常需要结合多个方面进行分析和优化,包括索引优化、SQL语句重构、数据库结构调整等。下面,我将通过一个例子来说明如何优化MySQL的慢查询,包括多表关联和条件查询。 假设我们有一个简化的电子商务系统…...

开源数据可视化大屏对接表单数据实践!

如果你需要一个表单系统,进行数据收集;可以使用tduck填鸭进行私有化部署,进行表单制作,完成数据收集。 在实际业务中,往往需要将收集的数据进行展示或分析;此时就可以使用表单数据推送到TReport中&#xf…...

08.图形化界面字体问题处理

图形化界面字体问题处理 发现图形存在乱码,不显示文字 zabbix服务器的字符集所在的路径下: /usr/share/zabbix/assets/fonts 将本地windows系统的字体进行上传,选择一个自己喜欢的字体 上传到系统路径下并且直接覆盖掉 回到web浏览器界面…...

【代码随想录算法训练营第37期 第二天 | LeetCode977.有序数组的平方、209.长度最小的子数组、59.螺旋矩阵II】

代码随想录算法训练营第37期 第二天 | LeetCode977.有序数组的平方、209.长度最小的子数组、59.螺旋矩阵II 一、977.有序数组的平方 解题代码C&#xff1a; class Solution { public:vector<int> sortedSquares(vector<int>& nums) {int len nums.size();fo…...

Java:Servlet详解

目录 一、什么是Servlet 二、Servlet原理 Servlet的生命周期 三、 Servlet注释 WebServlet 一、什么是Servlet Servlet是JavaWeb开发的一种技术&#xff0c;Servlet程序需要部署在Servlet容器&#xff08;服务端&#xff09;中才能运行&#xff0c;常见的Servlet容器有Tom…...

Oracle存储过程怎么定义类并继承

在Oracle数据库中&#xff0c;存储过程&#xff08;Stored Procedure&#xff09;是用于执行特定功能的预编译的SQL代码块。然而&#xff0c;Oracle的存储过程并不直接支持面向对象的编程概念&#xff0c;如类&#xff08;Class&#xff09;和继承&#xff08;Inheritance&…...

14_Scala面向对象编程_属性

文章目录 属性1.类中属性声明2.系统默认赋值3.BeanProperty4.整体代码如下 属性 1.类中属性声明 // 1.给Scala声明属性&#xff1b;var name :String "zhangsan"val age :Int 302.系统默认赋值 scala由于初始化变量必须赋值&#xff0c;为了解决此问题可以采…...

什么是网页反作弊

在搜索引擎技术中&#xff0c;网页反作弊是指一种防止网页排名被恶意操纵的技术。搜索引擎会根据特定的算法来评估网页的相关性和质量&#xff0c;以决定其在搜索结果中的排名。然而&#xff0c;有些人可能会尝试通过各种不正当的手段来提高自己网页的排名&#xff0c;这被称为…...

MAVEN打包JAR启动执行manifest

当您使用Maven进行项目打包&#xff0c;特别是需要创建一个可执行的JAR文件时&#xff0c;确保JAR文件的MANIFEST.MF中包含正确的Main-Class属性是非常重要的。这个属性告诉Java运行时环境哪个类包含main方法&#xff0c;作为应用程序的入口点。 如果您发现生成的JAR文件不包含…...

JavaEE 多线程详细讲解(1)

1.线程是什么 &#xff08;shift F6&#xff09;改类名 1.1.并发编程是什么 &#xff08;1&#xff09;当前的CPU&#xff0c;都是多核心CPU &#xff08;2&#xff09;需要一些特定的编程技巧&#xff0c;把要完成的仍无&#xff0c;拆解成多个部分&#xff0c;并且分别让…...

数据分析从入门到精通 1.numpy剑客修炼

会在某一瞬间突然明白&#xff0c;有些牢笼是自己给自己的 —— 24.5.5 一、数据分析秘笈介绍 1.什么是数据分析 是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来&#xff0c;总结出所研究对象的内在规律。使得数据的价值最大化 案例&#xff1a; 分析用户的消…...

【iOS】KVO

文章目录 前言一、KVO使用1.基本使用2.context使用3.移除KVO通知的必要性4.KVO观察可变数组 二、代码调试探索1.KVO对属性观察2.中间类3.中间类的方法3.dealloc中移除观察者后&#xff0c;isa指向是谁&#xff0c;以及中间类是否会销毁&#xff1f;总结 三、KVO本质GNUStep窥探…...

python json字符串怎么用format方法填充参数值报KeyError

python json字符串怎么用format方法填充参数值报KeyError 需求问题分析解决方案 需求 因为python中的字典和json中的一些变量有差异&#xff0c;比如&#xff1a;json中有null、true&#xff0c;在python中就不会被识别&#xff0c;只能转换成字符串&#xff0c;在通过loads()…...

C++新手村指南:入门基础

目录 C概念 C发展史 C关键字&#xff08;C98&#xff09; 命名空间 命名空间的定义 命名空间的使用 C中的输入&&输出 缺省参数 缺省参数的概念 缺省参数的分类 函数重载 函数重载概念 函数重载实现 引用 引用的概念 引用的特性 常引用 引用的使用场景…...

智慧旅游推动旅游服务智慧化转型:借助智能科技的力量,实现旅游资源的精准匹配和高效利用,为游客提供更加便捷、舒适的旅游环境

目录 一、引言 二、智慧旅游的定义与特点 &#xff08;一&#xff09;智慧旅游的定义 &#xff08;二&#xff09;智慧旅游的特点 三、智能科技在旅游服务中的应用 &#xff08;一&#xff09;大数据分析助力旅游决策 &#xff08;二&#xff09;人工智能实现个性化推荐…...

Hikyuu-PF-银行股轮动交易策略实现

今天&#xff0c;带来的是“如何使用 Hikyuu 中的投资组合来实现银行股轮动交易策略”。 这个策略的逻辑很简单&#xff1a;持续持有两支市净率最低银行股&#xff0c;然后每月换仓 定义回测周期与回测标的 同样&#xff0c;首先定义回测周期&#xff1a; # 定义回测日期 …...

【氮化镓】GaN功率器件在转换器设计中的挑战

I. 引言(INTRODUCTION) 宽带隙(WBG)器件的重要性: 引言部分首先强调了宽带隙(WBG)器件在高频、高效率电力电子技术中的关键作用。这些器件,包括碳化硅(SiC)和氮化镓(GaN),相较于传统的硅功率器件,具有显著的优势。宽带隙半导体材料的高击穿场强允许设计更薄的漂…...

DOTA-Gly-Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH2,1306310-00-8,是一种重要的多肽化合物

一、试剂信息 名称&#xff1a;DOTA-Gly-Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH2CAS号&#xff1a;1306310-00-8结构式&#xff1a; 二、试剂内容 DOTA-Gly-Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH2是一种重要的多肽化合物&#xff0c;其CAS号为1306310-00-8。该多肽包含一个DO…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storms…...