当前位置: 首页 > news >正文

Pytorch基础:torch.expand() 和 torch.repeat()

在torch中,如果要改变某一个tensor的维度,可以利用viewexpandrepeattransposepermute等方法,这里对这些方法的一些容易混淆的地方做个总结。

expand和repeat函数是pytorch中常用于进行张量数据复制维度扩展的函数,但其工作机制差别很大,本文对这两个函数进行对比。

1. torch.expand()

  • 作用: expand()函数可以将张量广播到新的形状。
  • 注意: 只能对维度值为1的维度进行扩展无需扩展的维度,维度值不变,对应位置可写上原始维度大小或直接写作-1;且扩展的Tensor不会分配新的内存,只是原来的基础上创建新的视图并返回,返回的张量内存不连续的。类似于numpy中的broadcast_to函数的作用。如果希望张量内存连续,可以调用contiguous函数。

expand函数用于将张量中单数维的数据扩展到指定的size。

首先解释下什么叫单数维(singleton dimensions),张量在某个维度上的size为1,则称为单数维。比如zeros(2,3,4)不存在单数维,而zeros(2,1,4)在第二个维度(即维度1)上为单数维。expand函数仅仅能作用于这些单数维的维度上

参数*sizes用于逐个指定各个维度扩展后的大小(也可以理解为拓展的次数),对于不需要或者无法(即非单数维)进行扩展的维度,对应位置可写上原始维度大小或直接写作-1

expand函数可能导致原始张量的升维,其作用在张量前面的维度上(在tensor的低维增加更多维度),因此通过expand函数可将张量数据复制多份(可理解为沿着第一个batch的维度上)。

import torcha = torch.tensor([1, 0, 2])     # a -> torch.Size([3])
b1 = a.expand(2, -1)            # 第一个维度为升维,第二个维度保持原样
'''
b1为 -> torch.Size([3, 2])
tensor([[1, 0, 2],[1, 0, 2]])
'''a = torch.tensor([[1], [0], [2]])   # a -> torch.Size([3, 1])
b2 = a.expand(-1, 2)                 # 保持第一个维度,第二个维度只有一个元素,可扩展
'''
b2 -> torch.Size([3, 2])
b2为  tensor([[1, 1],[0, 0],[2, 2]])
'''a = torch.Tensor([[1, 2, 3]])   # a -> torch.Size([1, 3])
b3 = a.expand(4, 3)              # 也可写为a.expand(4, -1)  对于某一个维度上的值为1的维度,# 可以在该维度上进行tensor的复制,若大于1则不行
'''
b3 -> torch.Size([4, 3])
tensor([[1.,2.,3.],[1.,2.,3.],[1.,2.,3.],[1.,2.,3.]]
)
'''a = torch.Tensor([[1, 2, 3], [4, 5, 6]])  # a -> torch.Size([2, 3])
b4 = a.expand(4, 6)  # 最高几个维度的参数必须和原始shape保持一致,否则报错
'''
RuntimeError: The expanded size of the tensor (6) must match 
the existing size (3) at non-singleton dimension 1.
'''b5 = a.expand(1, 2, 3)  # 可以在tensor的低维增加更多维度
'''
b5 -> torch.Size([1,2, 3])
tensor([[[1.,2.,3.],[4.,5.,6.]]]
)
'''
b6 = a.expand(2, 2, 3)  # 可以在tensor的低维增加更多维度,同时在新增加的低维度上进行tensor的复制
'''
b5 -> torch.Size([2,2, 3])
tensor([[[1.,2.,3.],[4.,5.,6.]],[[1.,2.,3.],[4.,5.,6.]]]
)
'''b7 = a.expand(2, 3, 2)  # 不可在更高维增加维度,否则报错
'''
RuntimeError: The expanded size of the tensor (2) must match the 
existing size (3) at non-singleton dimension 2.
'''b8 = a.expand(2, -1, -1)  # 最高几个维度的参数可以用-1,表示和原始维度一致
'''
b8 -> torch.Size([2,2, 3])
tensor([[[1.,2.,3.],[4.,5.,6.]],[[1.,2.,3.],[4.,5.,6.]]]
)
'''# expand返回的张量与原版张量具有相同内存地址
print(b8.storage())  # 存储区的数据,说明expand后的a,aa,aaa,aaaa是共享storage的,
# 只是tensor的头信息区设置了不同的数据展示格式,从而使得a,aa,aaa,aaaa呈现不同的tensor形式
'''
1.0
2.0
3.0
4.0
5.0
6.0
'''

1.1 expand_as

可视为expand的另一种表达,其size通过函数传递的目标张量的size来定义。

import torch
a = torch.tensor([1, 0, 2])
b = torch.zeros(2, 3)
c = a.expand_as(b)  # a照着b的维度大小进行拓展
# c为 tensor([[1, 0, 2],
#        [1, 0, 2]])

2 tensor.repeat()

沿着特定维度扩展张量,并返回扩展后的张量

  • 作用:和expand()作用类似,均是将tensor广播到新的形状。
  • 注意:不允许使用维度-1,1即为不变
import torchif __name__ == '__main__':x = torch.rand(2, 3)y1 = x.repeat(4, 2)print(y1.shape)  # torch.Size([8, 6])

3. 两者内存占用的区别

  • torch.expand 不会占用额外空间,只是在存在的张量上创建一个新的视图

  • torch.repeat 和 torch.expand 不同,它是拷贝了数据,会占用额外的空间

示例如下:

import torchif __name__ == '__main__':x = torch.rand(1, 3)y1 = x.expand(4, 3)y2 = x.repeat(2, 3)print(x.storage().data_ptr(), y1.storage().data_ptr())  # 52364352 52364352print(x.storage().data_ptr(), y2.storage().data_ptr())  # 52364352 8852096

相关文章:

Pytorch基础:torch.expand() 和 torch.repeat()

在torch中,如果要改变某一个tensor的维度,可以利用view、expand、repeat、transpose和permute等方法,这里对这些方法的一些容易混淆的地方做个总结。 expand和repeat函数是pytorch中常用于进行张量数据复制和维度扩展的函数,但其…...

如何正确安装Scrapy 2.6.1并解决常见的Python环境问题

在配置Python环境和安装包时,常常会遇到版本冲突和路径问题,特别是当系统中存在多个Python版本时。本文将指导你如何在CentOS系统中正确使用pip3安装Scrapy 2.6.1,并解决一些常见的环境问题。 步骤1: 确认和升级 pip3 确认 pip3 的版本&…...

阵痛中的乳业产业,何时才能成为下一个啤酒产业?

说起饮品,近年来中国啤酒业中各大品牌齐齐聚焦高端化的趋势绝对值得一提。然而,与之相反,国内乳业却是仍未进入高端化阶段,甚至陷入了周期底部中。 图源:中国圣牧财报 增收降利 牧企承受巨大的供需缺口压力 从产业链…...

关于模型参数融合的思考

模型参数融合通常指的是在训练过程中或训练完成后将不同模型的参数以某种方式结合起来,以期望得到更好的性能。这种融合可以在不同的层面上进行,例如在神经网络的不同层之间,或者是在完全不同的模型之间。模型参数融合的目的是结合不同模型的…...

Windows MySQL本地服务器设置并导入数据库和数据

文章目录 小结问题及解决导出数据库Windows MySQL本地服务器设置导入数据库和数据 参考 小结 最近需要在本地Windows环境中设置MySQL服务器,并导入数据库和数据,记录过程。 问题及解决 导出数据库 首先需要导出数据库: C:\mysql-8.0.37-…...

豪投巨资,澳大利亚在追逐海市蜃楼吗?

澳大利亚政府正在积极投资于量子计算领域。继2021年向量子技术投资逾1亿澳元后,2023年5月,该国发布了首个国家量子战略,详细阐述了如何把握量子技术的未来及保持全球领先地位。 澳大利亚的国家量子战略概述 原文链接: https://ww…...

面试集中营—Redis架构篇

一、Redis到底是多线程还是单线程 1、redis6.0版本之前的单线程,是指网络请求I/O与数据的读写是由一个线程完成的; 2、redis6.0版本升级成了多线程,指的是在网络请求I/O阶段应用的多线程技术;而键值对的读写还是由单线程完成的。所…...

05_kafka-整合springboot

文章目录 kafka 整合 springboot pom.xml <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.1.5.RELEASE</version> </parent> <dependencies>&…...

论UML在学情精准测评系统中的应用

摘要简介 项目背景&#xff1a; 随着教育改革的不断深入&#xff0c;对学生学情的精准测评成为教育教学工作中的重要环节。为了解决传统学情测评方式主观性强、效率低、反馈不及时等问题&#xff0c;我们团队受教育主管部门委托&#xff0c;承担了中小学学情精准测评系统&…...

Day23 代码随想录打卡|字符串篇---重复的子字符串

题目&#xff08;leecode T459&#xff09;&#xff1a; 给定一个非空的字符串 s &#xff0c;检查是否可以通过由它的一个子串重复多次构成。给定的字符串只含有小写英文字母&#xff0c;并且长度不超过10000。fang 移动匹配。分析可以由自己的子串构成的字符串&#xff0c;肯…...

【win10 文件夹数量和看到不一致查看隐藏文件已经打开,Thumb文件作妖】

目录 任务介绍&#xff1a;重命名规则修改前修改后 实现思路VB代码实现BUG犯罪现场&#xff08;眼见不一定为实&#xff09;破案1&#xff1a;抓顶风作案的反贼&#xff01;&#xff01;&#xff01;破案2&#xff1a;破隐身抓刺客&#xff01;&#xff01;&#xff01;杀器&am…...

ctfshow web入门 sql注入 web224--web233

web224 扫描后台&#xff0c;发现robots.txt&#xff0c;访问发现/pwdreset.php &#xff0c;再访问可以重置密码 &#xff0c;登录之后发现上传文件 检查发现没有限制诶 上传txt,png,zip发现文件错误了 后面知道群里有个文件能上传 <? _$GET[1]_?>就是0x3c3f3d60245…...

「Java开发指南」如何用MyEclipse搭建GWT 2.1和Spring?(一)

本教程将指导您如何生成一个可运行的Google Web Toolkit (GWT) 2.1和Spring应用程序&#xff0c;该应用程序为域模型实现了CRUD应用程序模式。在本教程中&#xff0c;您将学习如何&#xff1a; 安装Google Eclipse插件为GWT配置一个项目搭建从数据库表到一个现有的项目GWT编译…...

python同时进行字符串的多种替换

一些常见的方法&#xff1a; 使用str.replace()方法&#xff1a;这是一种简单的方法&#xff0c;但是如果你有多个替换需要进行&#xff0c;可能会变得很繁琐。 text "This is a sample text with some words." text text.replace("sample", "exa…...

【Java基础题型】用筛法求之N内的素数(老题型)

输入格式 N输出格式 0&#xff5e;N的素数样例输入 100样例输出 2 3 5 7 11 13 17 19 23 29 31 37 老朋友素数了属于是&#xff01; 方法1&#xff1a;(穷举法) 通过遍历 i 的所有除数&#xff0c;如果除以除数后商变成了0&#xff0c;那么把布尔值变成假的。表示不是素数 【…...

Linux进程——Linux环境变量

前言&#xff1a;在结束完上一篇的命令行参数时&#xff0c;我们简单的了解了一下Linux中的环境变量PATH&#xff0c;而环境变量不只有PATH&#xff0c;关于更多环境变量的知识我们将在本篇展开&#xff01; 本篇主要内容&#xff1a; 常见的环境变量 获取环境变量的三种方式 本…...

SRM系统供应链库存协同提升企业服务水平

SRM系统供应链库存协同是一种以提高供应链整体效率和竞争力为目标的管理方法。它涉及到企业与供应商之间的紧密合作&#xff0c;以实现库存优化、成本降低、风险分担和灵活响应市场变化等目标。 一、SRM供应链库存协同的概念和特点 SRM供应链库存协同是指企业与供应商之间通过…...

Windows安全加固-账号与口令管理

在当今日益增长的网络安全威胁中&#xff0c;Windows系统的安全加固显得尤为重要。其中&#xff0c;账号与口令管理作为系统安全的第一道防线&#xff0c;其重要性不言而喻。本文将深入探讨Windows安全加固中的账号与口令管理策略&#xff0c;以确保系统的安全性和稳定性。 账…...

【数据库原理及应用】期末复习汇总高校期末真题试卷03

试卷 一、选择题 1 数据库中存储的基本对象是_____。 A 数字 B 记录 C 元组 D 数据 2 下列不属于数据库管理系统主要功能的是_____。 A 数据定义 B 数据组织、存储和管理 C 数据模型转化 D 数据操纵 3 下列不属于数据模型要素的是______。 A 数据结构 B 数据字典 C 数据操作 D…...

数据库加密数据模糊匹配查询技术方案

文章目录 前言沙雕方案内存加载解密密文映射表 常规做法实现数据库加密算法参考 分词组合加密&#xff08;推荐&#xff09; 超神方案总结个人简介 前言 在数据安全性和查询效率之间找到平衡是许多数据管理系统所面临的挑战之一。特别是在涉及加密数据的情况下&#xff0c;如何…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

pgsql:还原数据库后出现重复序列导致“more than one owned sequence found“报错问题的解决

问题&#xff1a; pgsql数据库通过备份数据库文件进行还原时&#xff0c;如果表中有自增序列&#xff0c;还原后可能会出现重复的序列&#xff0c;此时若向表中插入新行时会出现“more than one owned sequence found”的报错提示。 点击菜单“其它”-》“序列”&#xff0c;…...

LangChain【6】之输出解析器:结构化LLM响应的关键工具

文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器&#xff1f;1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...

Linux操作系统共享Windows操作系统的文件

目录 一、共享文件 二、挂载 一、共享文件 点击虚拟机选项-设置 点击选项&#xff0c;设置文件夹共享为总是启用&#xff0c;点击添加&#xff0c;可添加需要共享的文件夹 查询是否共享成功 ls /mnt/hgfs 如果显示Download&#xff08;这是我共享的文件夹&#xff09;&…...

【工具教程】多个条形码识别用条码内容对图片重命名,批量PDF条形码识别后用条码内容批量改名,使用教程及注意事项

一、条形码识别改名使用教程 打开软件并选择处理模式&#xff1a;打开软件后&#xff0c;根据要处理的文件类型&#xff0c;选择 “图片识别模式” 或 “PDF 识别模式”。如果是处理包含条形码的 PDF 文件&#xff0c;就选择 “PDF 识别模式”&#xff1b;若是处理图片文件&…...

mcts蒙特卡洛模拟树思想

您这个观察非常敏锐&#xff0c;而且在很大程度上是正确的&#xff01;您已经洞察到了MCTS算法在不同阶段的两种不同行为模式。我们来把这个关系理得更清楚一些&#xff0c;您的理解其实离真相只有一步之遥。 您说的“select是在二次选择的时候起作用”&#xff0c;这个观察非…...

比较数据迁移后MySQL数据库和ClickHouse数据仓库中的表

设计一个MySQL数据库和Clickhouse数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

OpenHarmony标准系统-HDF框架之I2C驱动开发

文章目录 引言I2C基础知识概念和特性协议&#xff0c;四种信号组合 I2C调试手段硬件软件 HDF框架下的I2C设备驱动案例描述驱动Dispatch驱动读写 总结 引言 I2C基础知识 概念和特性 集成电路总线&#xff0c;由串网12C(1C、12C、Inter-Integrated Circuit BUS)行数据线SDA和串…...