当前位置: 首页 > news >正文

C++:内存管理

C++:内存管理

  • 一、C/C++内存分布
  • 二、C语言中动态内存管理方式:malloc/calloc/realloc/free
  • 三、C++内存管理方式
    • 1.new/delete操作内置类型
    • 2.new和delete操作自定义类型
  • 四、operator new与operator delete函数(重点)
  • 五、new和delete的实现原理
    • 1.内置类型
    • 2.自定义类型
  • 六、 定位new表达式(placement-new) (了解)
  • 七、常见面试题
    • 1.malloc/free和new/delete的区别
    • 2.内存泄漏
      • 2.1 什么是内存泄漏,内存泄漏的危害
      • 2.2内存泄漏分类(了解)
      • 2.3如何检测内存泄漏(了解)
      • 2.4如何避免内存泄漏


一、C/C++内存分布

我们先来看下面的一段代码和相关问题

int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{static int staticVar = 1;int localVar = 1;int num1[10] = { 1, 2, 3, 4 };char char2[] = "abcd";const char* pChar3 = "abcd";int* ptr1 = (int*)malloc(sizeof(int) * 4);int* ptr2 = (int*)calloc(4, sizeof(int));int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);free(ptr1);free(ptr3);
}
  1. 选择题:
    选项: A.栈 B.堆 C.数据段(静态区) D.代码段(常量区)
    globalVar在哪里?____ staticGlobalVar在哪里?____
    staticVar在哪里?____ localVar在哪里?____
    num1 在哪里?____
    char2在哪里?____ *char2在哪里?___ pChar3在哪里?____ *pChar3在哪里?____ ptr1在哪里?____ *ptr1在哪里?____

  2. 填空题: sizeof(num1) = ____; 【说明】

  3. 栈又叫堆栈–非静态局部变量/函数参数/返回值等等,栈是向下增长的。

  4. 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口 创建共享共享内存,做进程间通信。(Linux课程如果没学到这块,现在只需要了解一下)

  5. 堆用于程序运行时动态内存分配,堆是可以上增长的。

  6. 数据段–存储全局数据和静态数据。

  7. 代码段–可执行的代码/只读常量。

  8. C语言中动态内存管理方式:malloc/calloc/realloc/free 【面试题】

  9. malloc/calloc/realloc的区别? sizeof(char2) = ____; strlen(char2) = ____; sizeof(pChar3) = ____; strlen(pChar3) =
    ____; sizeof(ptr1) = ____;

  10. sizeof 和 strlen 区别?

在这里插入图片描述

  1. 栈又叫堆栈–非静态局部变量/函数参数/返回值等等,栈是向下增长的。
  2. 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口创建共享共享内存,做进程间通信。
  3. 堆用于程序运行时动态内存分配,堆是可以上增长的。
  4. 数据段–存储全局数据和静态数据。
  5. 代码段–可执行的代码/只读常量。

二、C语言中动态内存管理方式:malloc/calloc/realloc/free

void Test ()
{int* p1 = (int*) malloc(sizeof(int));free(p1);// 1.malloc/calloc/realloc的区别是什么?int* p2 = (int*)calloc(4, sizeof (int));int* p3 = (int*)realloc(p2, sizeof(int)*10);// 这里需要free(p2)吗?free(p3 );
}

【面试题】

  1. malloc/calloc/realloc的区别?
  2. malloc的实现原理? glibc中malloc的实现原理

三、C++内存管理方式

C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因
此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。

1.new/delete操作内置类型

void Test()
{// 动态申请一个int类型的空间int* ptr4 = new int;// 动态申请一个int类型的空间并初始化为10int* ptr5 = new int(10);// 动态申请10个int类型的空间int* ptr6 = new int[3];delete ptr4;delete ptr5;delete[] ptr6;
}

在这里插入图片描述

2.new和delete操作自定义类型

class A
{
public:A(int a = 0): _a(a){cout << "A():" << this << endl;}~A(){cout << "~A():" << this << endl;}
private:int _a;
};
int main()
{// new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间还会调用构造函数和析构函数A* p1 = (A*)malloc(sizeof(A));A* p2 = new A(1);free(p1);delete p2;// 内置类型是几乎是一样的int* p3 = (int*)malloc(sizeof(int)); // Cint* p4 = new int;free(p3);delete p4;A* p5 = (A*)malloc(sizeof(A) * 10);A* p6 = new A[10];free(p5);delete[] p6;return 0;
}

注意:在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数,而malloc与free不会。

四、operator new与operator delete函数(重点)

new和delete是用户进行动态内存申请和释放的操作符,operator new 和operator delete是
系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过
operator delete全局函数来释放空间。

/*
operator new:该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;申请空间
失败,尝试执行空               间不足应对措施,如果改应对措施用户设置了,则继续申请,否
则抛异常。
*/
void *__CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{// try to allocate size bytesvoid *p;while ((p = malloc(size)) == 0)通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果
malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施
就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。5. newdelete的实现原理 
5.1 内置类型 if (_callnewh(size) == 0){// report no memory// 如果申请内存失败了,这里会抛出bad_alloc 类型异常static const std::bad_alloc nomem;_RAISE(nomem);}return (p);
}
/*
operator delete: 该函数最终是通过free来释放空间的
*/
void operator delete(void *pUserData)
{_CrtMemBlockHeader * pHead;RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));if (pUserData == NULL)return;_mlock(_HEAP_LOCK);  /* block other threads */__TRY/* get a pointer to memory block header */pHead = pHdr(pUserData);/* verify block type */_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));_free_dbg( pUserData, pHead->nBlockUse );__FINALLY_munlock(_HEAP_LOCK);  /* release other threads */__END_TRY_FINALLYreturn;
}
/*
free的实现
*/
#define   free(p)               _free_dbg(p, _NORMAL_BLOCK)

通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果
malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。

五、new和delete的实现原理

1.内置类型

如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:
new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申
请空间失败时会抛异常,malloc会返回NULL。

2.自定义类型

new的原理

  1. 调用operator new函数申请空间
  2. 在申请的空间上执行构造函数,完成对象的构造

delete的原理

  1. 在空间上执行析构函数,完成对象中资源的清理工作
  2. 调用operator delete函数释放对象的空间

new T[N]的原理

  1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对
    象空间的申请
  2. 在申请的空间上执行N次构造函数

delete[]的原理

  1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
  2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释
    放空间

六、 定位new表达式(placement-new) (了解)

定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。
使用格式:
new (place_address) type或者new (place_address) type(initializer-list)
place_address必须是一个指针,initializer-list是类型的初始化列表
使用场景:
定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化。

class A
{
public:A(int a = 0): _a(a){cout << "A():" << this << endl;}~A(){cout << "~A():" << this << endl;}
private:int _a;
}; 
// 定位new/replacement new
int main()
{// p1现在指向的只不过是与A对象相同大小的一段空间,还不能算是一个对象,因为构造函数没
有执行A* p1 = (A*)malloc(sizeof(A));new(p1)A;  // 注意:如果A类的构造函数有参数时,此处需要传参p1->~A();free(p1);A* p2 = (A*)operator new(sizeof(A));new(p2)A(10);p2->~A();operator delete(p2);return 0;
}

七、常见面试题

1.malloc/free和new/delete的区别

malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地方是:

  1. malloc和free是函数,new和delete是操作符
  2. malloc申请的空间不会初始化,new可以初始化
  3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可, 如果是多个对象,[]中指定对象个数即可
  4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型
  5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需
    要捕获异常
  6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理

2.内存泄漏

2.1 什么是内存泄漏,内存泄漏的危害

什么是内存泄漏:内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内存泄漏并不是指内存在物理上的消失,而是应用程序分配某段内存后,因为设计错误,失去了对该段内存的控制,因而造成了内存的浪费。
内存泄漏的危害:长期运行的程序出现内存泄漏,影响很大,如操作系统、后台服务等等,出现内存泄漏会导致响应越来越慢,最终卡死。

void MemoryLeaks()
{// 1.内存申请了忘记释放int* p1 = (int*)malloc(sizeof(int));int* p2 = new int;// 2.异常安全问题int* p3 = new int[10];Func(); // 这里Func函数抛异常导致 delete[] p3未执行,p3没被释放.delete[] p3;
}

2.2内存泄漏分类(了解)

C/C++程序中一般我们关心两种方面的内存泄漏:

- 堆内存泄漏(Heap leak)
堆内存指的是程序执行中依据须要分配通过malloc / calloc / realloc /new等从堆中分配的一块内存,用完后必须通过调用相应的 free或者delete删掉。假设程序的设计错误导致这部分内存没有被释放,那么以后这部分空间将无法再被使用,就会产生Heap Leak。
- 系统资源泄漏
指程序使用系统分配的资源,比方套接字、文件描述符、管道等没有使用对应的函数释放掉,导致系统资源的浪费,严重可导致系统效能减少,系统执行不稳定。

2.3如何检测内存泄漏(了解)

在vs下,可以使用windows操作系统提供的_CrtDumpMemoryLeaks() 函数进行简单检测,该
函数只报出了大概泄漏了多少个字节,没有其他更准确的位置信息。

int main()
{int* p = new int[10];// 将该函数放在main函数之后,每次程序退出的时候就会检测是否存在内存泄漏_CrtDumpMemoryLeaks();return 0;
}

// 程序退出后,在输出窗口中可以检测到泄漏了多少字节,但是没有具体的位置
Detected memory leaks!
Dumping objects ->
{79} normal block at 0x00EC5FB8, 40 bytes long.
Data: <                > CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD 
Object dump complete.

因此写代码时一定要小心,尤其是动态内存操作时,一定要记着释放。但有些情况下总是防不胜防,简单的可以采用上述方式快速定位下。如果工程比较大,内存泄漏位置比较多,不太好查时一般都是借助第三方内存泄漏检测工具处理的。
在linux下内存泄漏检测:linux下几款内存泄漏检测工具
在windows下使用第三方工具:VLD工具说明
其他工具:内存泄漏工具比较

2.4如何避免内存泄漏

  1. 工程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放ps:
    这个理想状态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下一条智能指针来管理才有保证。
  2. 采用RAII思想或者智能指针来管理资源。
  3. 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。
  4. 出问题了使用内存泄漏工具检测。ps:不过很多工具都不够靠谱,或者收费昂贵。
    总结一下:
    内存泄漏非常常见,解决方案分为两种:
    1、事前预防型。如智能指针等。
    2、事后查错型。如泄漏检测工具。

相关文章:

C++:内存管理

C:内存管理 一、C/C内存分布二、C语言中动态内存管理方式&#xff1a;malloc/calloc/realloc/free三、C内存管理方式1.new/delete操作内置类型2.new和delete操作自定义类型 四、operator new与operator delete函数&#xff08;重点&#xff09;五、new和delete的实现原理1.内置…...

Veeam - 数据保护和管理解决方案_Windows平台部署备份还原VMware手册

Veeam - - 数据保护和管理解决方案 Veeam Backup & Replication Console Veeam Data Platform Veeam Backup & Replication是一款强大的虚拟机备份、恢复和复制解决方案 安全备份、干净恢复和数据弹性 — 即时交付 在混合云中随时随地管理、控制、备份和恢复您的所有数…...

易基因:Nature子刊:ChIP-seq等揭示c-di-AMP与DasR互作以调控细菌生长、发育和抗生素合成|项目文章

大家好&#xff0c;这里是专注表观组学十余年&#xff0c;领跑多组学科研服务的易基因。 c-di-AMP是一种在细菌信号中普遍存在且至关重要的核苷酸第二信使&#xff0c;对于大多数c-di-AMP合成生物体来说&#xff0c;c-di-AMP稳态及其信号转导的分子机制非常值得关注。 2024年…...

stm32学习探究:利用TB6612驱动直流电机

在这篇文章中&#xff0c;我们将探讨如何使用STM32微控制器和TB6612FNG直流电机驱动模块来驱动直流电机。TB6612FNG是一款基于MOSFET的H桥集成电路&#xff0c;能够独立双向控制两个直流电机&#xff0c;非常适合用于小型机器人或双轮车等项目。 一、TB6612FNG 驱动模块介绍 …...

SpringBatch快速入门

Job监听 Spring Batch的Job监听是一种机制&#xff0c;用于在Job的不同阶段插入自定义的逻辑。它允许开发人员在Job开始、结束、失败等不同的事件发生时执行特定的操作。 具体来说&#xff0c;Spring Batch提供了以下几个Job监听器&#xff1a; JobExecutionListener&#xff…...

下载Node.js及其他环境推荐nvm

文章目录 项目场景&#xff1a;下载Node.js环境配置配置环境变量 安装脚手架安装依赖安装淘宝镜像安装 cnpm&#xff08;我需要安装&#xff09;nvm 安装 Node.js &#xff08;推荐&#xff09; 项目场景&#xff1a; 提示&#xff1a;这里简述项目相关背景&#xff1a; 项目…...

STM32 ADC学习

ADC Analog-to-Digital Converter&#xff0c;即模拟/数字转换器 常见ADC类型 分辨率和采样速度相互矛盾&#xff0c;分辨率越高&#xff0c;采样速率越低。 ADC的特性参数 分辨率&#xff1a;表示ADC能辨别的最小模拟量&#xff0c;用二进制位数表示&#xff0c;比如8,10…...

详解AI作画算法原理

在人工智能领域&#xff0c;AI作画技术已经成为一个引人入胜的研究方向。AI作画算法利用机器学习技术&#xff0c;尤其是深度学习&#xff0c;来生成具有艺术性的图像。本文将深入剖析AI作画的基本原理&#xff0c;包括其技术架构、关键组件以及工作流程。 引言 AI作画技术不…...

每日Attention学习3——Cross-level Feature Fusion

模块出处 [link] [code] [PR 23] Cross-level Feature Aggregation Network for Polyp Segmentation 模块名称 Cross-level Feature Fusion (CFF) 模块作用 双级特征融合 模块结构 模块代码 import torch import torch.nn as nnclass BasicConv2d(nn.Module):def __init__(…...

华为eNSP学习—IP编址

IP编址 IP编址子网划分例题展示第一步:机房1的子网划分第二步:机房2的子网划分第三步:机房3的子网划分IP编址 明确:IPv4地址长度32bit,点分十进制的形式 ip地址构成=网络位+主机位 子网掩码区分网络位和主机位 学此篇基础: ①学会十进制与二进制转换 ②学会区分网络位和…...

数据库的要求

本来我是不准备写数据库的。而且是准备从零开始&#xff0c;学习python&#xff0c;学完语言学&#xff0c;会c和写作技法&#xff0c;再来学习数据库 那样做的复杂度是天量的&#xff0c;按部就班什么的具备&#xff0c;因为你完全不清楚什么时候就有这个基础和条件&#xff0…...

Spring MVC(二)

1. 注解RequestMapping修饰类 在Spring MVC中一般都是使用注解RequestMapping来映射请求&#xff0c;也就是通过它来指定控制器可以处理哪些URL请求&#xff0c;相当于Servlet中在web.xml中配置的映射地址作用一致。在上一节的内容中&#xff0c;我们通过注解RequestMapping改进…...

ECP44304T-76是一款增强型通信处理器吗?

ABB ECP44304T-76是一款增强型通信处理器&#xff0c;专为ABB的PLC控制系统设计。 这款通信处理器的主要功能是提供PLC与其他设备或网络之间的通信接口。它支持多种通讯协议&#xff0c;包括但不限于Profibus、Ethernet、Modbus等&#xff0c;使得PLC可以轻松集成到复杂的工业…...

mongoDB分组查询

完整代码 //根据医院编号 和 科室编号 &#xff0c;查询排班规则数据Overridepublic Map<String, Object> getRuleSchedule(long page, long limit, String hoscode, String depcode) {//1 根据医院编号 和 科室编号 查询Criteria criteria Criteria.where("hosco…...

【Java 刷题记录】位运算

位运算 33. 位1的个数 编写一个函数&#xff0c;输入是一个无符号整数&#xff08;以二进制串的形式&#xff09;&#xff0c;返回其二进制表达式中 设置位 的个数&#xff08;也被称为汉明重量&#xff09;。 示例 1&#xff1a; 输入&#xff1a;n 11 输出&#xff1a;3 解释…...

WINDOWS下zookeeper突然无法启动但是端口未占用的解决办法(用了WSL)

windows下用着用着时候突然zookeeper启动不了了。netstat查也没有找到端口占用&#xff0c;就是起不来。控制台报错 java.lang.reflect.UndeclaredThrowableException: nullat org.springframework.util.ReflectionUtils.rethrowRuntimeException(ReflectionUtils.java:147) ~…...

【LLM第三篇】名词解释:RLHF——chatgpt的功臣

RLHF (Reinforcement Learning from Human Feedback) &#xff0c;直译为&#xff1a;“来自人类反馈的强化学习”。RLHF是一种结合了强化学习和人类反馈的机器学习方法&#xff0c;主要用于训练大模型以执行复杂的任务&#xff0c;尤其是当这些任务难以通过传统的奖励函数来精…...

基于Opencv的车牌识别系统(毕业设计可用)

系统架构 图像采集&#xff1a;首先&#xff0c;通过摄像头等设备捕捉车辆图像。图像质量直接影响后续处理的准确性&#xff0c;因此高质量的图像采集是基础。 预处理&#xff1a;对获取的原始图像进行预处理&#xff0c;包括灰度化、降噪、对比度增强和边缘检测等。这些操作旨…...

Leetcode—295. 数据流的中位数【困难】

2024每日刷题&#xff08;132&#xff09; Leetcode—295. 数据流的中位数 实现代码 class MedianFinder { public:MedianFinder() {}void addNum(int num) {if(maxHeap.empty() || num < maxHeap.top()) {maxHeap.push(num);} else {minHeap.push(num);}if(maxHeap.size(…...

JavaWeb之过滤器(Filter)与监听器(Listener)

前言 过滤器(Filter) 1.什么是过滤器 2.过滤器的语法格式 3.使用场景 3.1.如何防止用户未登录就执行后续操作 3.2.设置编码方式--统一设置编码 3.3.加密解密(密码的加密和解密) 3.4.非法文字筛选 3.5.下载资源的限制 监听器(Listener) 1.什么是监听器 2.监听器分类…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...