当前位置: 首页 > news >正文

【小白的大模型之路】基础篇:Transformer细节

基础篇:Transformer

  • 引言
  • 模型基础架构
    • 原论文架构图
    • Embedding
    • Postional Encoding
    • Multi-Head Attention
    • LayerNorm
    • Encoder
    • Decoder
    • 其他

引言

此文作者本身对transformer有一些基础的了解,此处主要用于记录一些关于transformer模型的细节部分用于进一步理解其具体的实现机制,输入输出细节,以及一些理解.此文会不定期更新用于记录新学习到的知识.

模型基础架构

原论文架构图

首先给出的是原论文 Attention is all you need中的架构图,我们会在这个篇章部分分列模型pipeline中的各个部件。在最后给出关于这个模型图中没有的细节补充。

论文原图

Embedding

其使用的是nn.embedding来进行初始化,根据词表里的数量和设置的隐层维度来初始化,可训练。(**TODO:**这里会存在词表的初始化问题,即分词方法,在后续介绍)

Postional Encoding

两种编码方式,learned PE是绝对位置编码,即直接随机初始化一个可训练的参数;Sinusoidal PE为相对位置的三角编码,首先根据位置pos和隐层维度位置i得到embedding值
f ( p o s , i ) = s i n ( p o s 1000 0 i N ) i f i 为奇数   e l s e c o s f(pos,i)=sin(\frac{pos}{10000^{\frac{i}{N}}}) \ \ \ \ if\ \ i为奇数\ \ else\ \ cos f(pos,i)=sin(10000Nipos)    if  i为奇数  else  cos

Multi-Head Attention

单头attention 的 Q/K/V 的shape和多头attention 的每个头的Qi/Ki/Vi的大小是不一样的,假如单头attention 的 Q/K/V的参数矩阵WQ/WK/WV的shape分别是[512, 512] (此处假设encoder的输入和输出是一样的shape),那么多头attention (假设8个头)的每个头的Qi/Ki/Vi的参数矩阵WQi/WKi/WVi大小是[512, 512/8].

LayerNorm

BatchNorm本质是对同一个批次中,每一个数据样本的不同通道求均值方差,通道之间不进行交互,并通过滑动动量平均的方式将批次的均值方差记录下来用于推理。BN相对更适合在数据批次上具有统计意义的问题,其会抹平特征之间的差异,保留样本之间的大小关系。而在NLP任务当中,每个句子内部的特征大小关系才是需要保留的,不同句子之间关联不大,因此抹平样本之间的大小关系更为合适。

Encoder

Encoder一般包含两部分,self-attention和feed-forward。每一层Encoder都有独立的一组权重参数。最后一层Encoder得到的Wk,Wv用于计算Decoder的cross-attention。

Decoder

Decoder一般包含三个部分,self-attention, encoder-decoder-attention和feed-forward。在这里和这里有一些关于Decoder实际部署时的运行细节。

在训练的时候,Decoder通过mask得到ground truth的shift-right的下三角矩阵,对于位置t,其拥有前t-1个时刻的所有信息,之后计算矩阵得到该位置的output,该output和同位置的ground truth计算损失(即teach forcing的方法)。在推理时,通过padding一个一个输入,但只取最后一个时刻的output作为全局的预测结果,因此可能存在非对应位置最优解(即beam search)。

其他

  • 编码层解码层堆栈:事实上encoder和decoder是可以进行stack的,原论文图中只展示了一层,其实际实现逻辑是下图。
    在这里插入图片描述
  • transformer只能够处理定长输入和定长输出,对于长度不定的数据,通过padding -INF等方法来进行补全,由于softmax的存在这些会约等于0。

相关文章:

【小白的大模型之路】基础篇:Transformer细节

基础篇:Transformer 引言模型基础架构原论文架构图EmbeddingPostional EncodingMulti-Head AttentionLayerNormEncoderDecoder其他 引言 此文作者本身对transformer有一些基础的了解,此处主要用于记录一些关于transformer模型的细节部分用于进一步理解其具体的实现机…...

Golang | Leetcode Golang题解之第73题矩阵置零

题目&#xff1a; 题解&#xff1a; func setZeroes(matrix [][]int) {n, m : len(matrix), len(matrix[0])col0 : falsefor _, r : range matrix {if r[0] 0 {col0 true}for j : 1; j < m; j {if r[j] 0 {r[0] 0matrix[0][j] 0}}}for i : n - 1; i > 0; i-- {for …...

JMeter性能压测脚本录制

第一步&#xff1a;电脑打开控制面板设置代理服务器 第二步&#xff1a;jmeter的测试计划添加一个HTTP&#xff08;S&#xff09;脚本记录器 在脚本记录器里配置好信息&#xff0c;然后保存为脚本文件&#xff08;.*表示限定&#xff09; 此方框内容为项目地址&#xff08;可改…...

缓存雪崩、缓存击穿、缓存穿透是什么、之间的区别及解决办法

缓存雪崩、缓存击穿、缓存穿透&#xff1a; 详细介绍看这篇文章&#xff0c;写得很好&#xff1a; 什么是缓存雪崩、缓存击穿、缓存穿透 下面是我自己总结的&#xff0c;比较简单清楚地展示了缓存雪崩、缓存击穿和缓存穿透的根本区别和相应的解决办法。强烈建议看完上述文章后…...

Pytorch张量广播

Pytorch 中的主要的数据结构包括标量、向量、矩阵、张量&#xff0c;同时支持数据之间的运算。在 Pytorch 中有一个张量广播的概念&#xff0c;就是要把小的放大&#xff0c;最后在一起做计算&#xff0c;并不是所有的张量都可以计算&#xff0c;规则如下 首先比较维度&#x…...

AI算法-高数2-导数定义和公式

P14 2.1 导数的定义(一):2.1 导数的定义_哔哩哔哩_bilibili 导数定义&#xff1a; 导数公式&#xff1a; P15 2.1 导数的定义(二)&#xff1a;2.1 导数的定义&#xff08;二&#xff09;_哔哩哔哩_bilibili [a,b]可导&#xff0c;a的端点&#xff1a;右可导&#xff0c;b端点&…...

Vitis HLS 学习笔记--AXI_STREAM_TO_MASTER

目录 1. 简介 2. 示例 2.1 示例功能介绍 2.2 示例代码 2.3 顶层函数解释 2.4 综合报告&#xff08;HW Interfaces&#xff09; 2.5 关于TKEEP和TSTRB 2.6 综合报告&#xff08;SW I/O Information&#xff09; 3. 总结 1. 简介 本文通过“<Examples>/Interface…...

WPF之可翻转面板

1&#xff0c;创建翻转面板的资源字典&#xff1a;FlippPanel.xaml。 无外观控件同样必须给样式指定类型&#xff08; <ControlTemplate TargetType"ss:FlipPanel">&#xff09;&#xff0c;相关详情参考&#xff1a;WPF之创建无外观控件-CSDN博客&#xff09…...

【深度学习】--slowfast视频理解数据集处理pipeline

官网指引&#xff1a; facebookresearch SlowFast &#xff1a;https://github.com/facebookresearch/SlowFast 进入dataset&#xff1a;https://github.com/facebookresearch/SlowFast/blob/main/slowfast/datasets/DATASET.md 这里面的东西需要通读&#xff0c;但是不要过于…...

ArcGIS10.2能用了10.2.2不行了(解决)

前两天我们的推文介绍了 ArcGIS10.2系列许可到期解决方案-CSDN博客文章浏览阅读2次。本文手机码字&#xff0c;不排版了。 昨晚&#xff08;2021\12\17&#xff09;12点后&#xff0c;收到很多学员反馈 ArcGIS10.2系列软件突然崩溃。更有的&#xff0c;今天全单位崩溃。​提示许…...

mysql查询表信息(表名、表结构、字段信息等)

MySQL中&#xff0c;您可以使用以下SQL查询数据库的表信息或者某个表中具体的信息&#xff0c;例如&#xff1a;字段、字段描述、索引等&#xff0c;以下为具体的SQL&#xff1a; 1、查询数据库所有表信息&#xff08;表名/表描述&#xff09; SELECTtable_name name,TABLE_C…...

【MySQL探索之旅】JDBC (Java连接MySQL数据库)

&#x1f4da;博客主页&#xff1a;爱敲代码的小杨. ✨专栏&#xff1a;《Java SE语法》 | 《数据结构与算法》 | 《C生万物》 |《MySQL探索之旅》 |《Web世界探险家》 ❤️感谢大家点赞&#x1f44d;&#x1f3fb;收藏⭐评论✍&#x1f3fb;&#xff0c;您的三连就是我持续更…...

tomcat-GC溢出

背景 一个项目需要导出大量的数据&#xff0c;导致GC但是这个项目在本地能够运行&#xff0c;但是在服务器上就不能运行本地和服务器的区别&#xff1a;NGINX和TOMCATGC和NGINX无关&#xff0c;那么就是Tomcat分配JVM的堆内存的容量不够 错误解决思路 网上教了一些查看JVM的大小…...

结合场景,浅谈深浅度拷贝

有两段代码是这样的&#xff1a; A段&#xff1a; List<String> list1 new ArrayList<>(); Bear B new Bear(); for(Apple apple : apples){B.url apple.url;B.content apple.content;list1.add(Bear); } B段&#xff1a; List<String> list1 new A…...

生成指定范围的随机整数

private static final Random RANDOM new Random();// 生成指定范围的随机整数public static int generateRandomInt(int min, int max) {return RANDOM.nextInt(max - min 1) min;}public static void main(String[] args) {Integer count 5;Integer randomInt generateR…...

少的缓存穿透是缓存击穿,大量的是缓存雪崩

只要请求穿过了缓存层&#xff0c;直接打到了数据库&#xff0c;我就把这个现象理解为缓存穿透。 只要缓存失效了&#xff0c;就会出现缓存穿透&#xff0c;然后根据失效缓存数量的多少&#xff0c;划分出缓存击穿和缓存雪崩 缓存一致性 先改redis再改mysql。...

设备能耗数据在线监测

在追求可持续发展和绿色经济的当下&#xff0c;企业对于设备能耗的管理愈发重视。设备能耗数据在线监测&#xff0c;不仅能帮助企业实时掌握设备的运行状况&#xff0c;还能为企业节能减排、降低运营成本提供有力支持。HiWoo Cloud平台凭借其先进的技术和丰富的经验&#xff0c…...

springboot整合websocket,超简单入门

springBoot整合webSocket&#xff0c;超简单入门 webSocket简洁 WebSocket 是一种基于 TCP 协议的全双工通信协议&#xff0c;它允许客户端和服务器之间建立持久的、双向的通信连接。相比传统的 HTTP 请求 - 响应模式&#xff0c;WebSocket 提供了实时、低延迟的数据传输能力。…...

代码随想录算法训练营第三十四天| 860.柠檬水找零 406.根据身高重建队列 452. 用最少数量的箭引爆气球

860.柠檬水找零 题目链接 思路 三种情况&#xff0c;一种贪心&#xff0c;在bill为20时&#xff0c;有一次贪心选择&#xff1a;优先考虑先找105&#xff0c;再考虑找3*5&#xff0c;因为5可以用于bill10和bill20两种情况 解题方法 第一种&#xff1a;bill5,直接收 第二种…...

ICode国际青少年编程竞赛- Python-2级训练场-识别循环规律2

ICode国际青少年编程竞赛- Python-2级训练场-识别循环规律2 1、 for i in range(3):Dev.step(3)Dev.turnRight()Dev.step(4)Dev.turnLeft()2、 for i in range(3):Spaceship.step(3)Spaceship.turnRight()Spaceship.step(1)3、 Dev.turnLeft() Dev.step(Dev.x - Item[1].…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...