当前位置: 首页 > news >正文

【回溯算法】【Python实现】最大团问题

文章目录

    • @[toc]
      • 问题描述
      • 回溯算法
      • `Python`实现
      • 时间复杂性

问题描述

  • 给定无向图 G = ( V , E ) G = (V , E) G=(V,E),如果 U ⊆ V U \subseteq V UV,且对任意 u u u v ∈ U v \in U vU ( u , v ) ∈ E (u , v) \in E (u,v)E,则称 U U U G G G的完全子图

  • G G G的完全子图 U U U G G G的一个团当且仅当 U U U不包含在 G G G的更大的完全子图中, G G G的最大团是指 G G G中所含顶点数最多的团

  • 如果 U ⊆ V U \subseteq V UV且对任意 u u u v ∈ U v \in U vU,有 ( u , v ) ∉ E (u , v) \notin E (u,v)/E,则称 U U U G G G的空子图

  • G G G的空子图 U U U G G G的独立集当且仅当 U U U不包含在 G G G的更大的空子图中, G G G的最大独立集是 G G G中所含顶点数最多的独立集

  • 对于任意无向图 G = ( V , E ) G = (V , E) G=(V,E),其补图 G ˉ = ( V ′ , E ′ ) \bar{G} = (V^{'} , E^{'}) Gˉ=(V,E)定义为: V ′ = V V^{'} = V V=V E ′ = { ( u , v ) ∣ ( u , v ) ∉ E } E^{'} = \set{(u , v) \mid (u , v) \notin E} E={(u,v)(u,v)/E}

  • 如果 U U U G G G的完全子图,则它是 G ˉ \bar{G} Gˉ的空子图,反之亦然,因此, G G G的团与 G ˉ \bar{G} Gˉ的独立集之间存在一一对应关系,特别地, U U U G G G的最大团,当且仅当 U U U G ˉ \bar{G} Gˉ的最大独立集

  • 无向图 G G G G G G的补图 G ˉ \bar{G} Gˉ如下图所示

1


回溯算法

  • G G G的最大团和最大独立集问题都可以看作图 G G G的顶点集 V V V的子集选取问题,因此,可用子集树表示问题的解空间,解最大团问题的回溯法与解装载问题的回溯法十分相似
  • 设当前扩展结点 Z Z Z位于解空间树的第 i i i层,在进入左子树前,必须确认从顶点 i i i到已选入的顶点集中每个顶点都有边相连,在进入右子树前,必须确认还有足够多的可选择顶点,使得算法有可能在右子树中找到更大的团

Python实现

def find_maximum_clique(graph):n = len(graph)vertices = list(range(n))max_clique = []def is_clique(current_clique):# 约束函数: 判断给定的顶点集合是否构成一个团(完全子图)for i in range(len(current_clique)):for j in range(i + 1, len(current_clique)):if not graph[current_clique[i]][current_clique[j]]:return Falsereturn Truedef bound(current_clique, vertices):# 限界函数return len(current_clique) + len(vertices)def backtrack(vertices, current_clique):nonlocal max_cliqueif not vertices:if len(current_clique) > len(max_clique):max_clique.clear()max_clique.extend(current_clique)returnvertex = vertices.pop(0)current_clique.append(vertex)neighbors = []for v in vertices:if graph[vertex][v]:neighbors.append(v)# 选择当前顶点并加入团if is_clique(current_clique):backtrack(neighbors, current_clique)# 恢复回溯前状态current_clique.pop()# 不选择当前顶点if bound(current_clique, vertices) > len(max_clique):backtrack(vertices, current_clique)backtrack(vertices, [])return max_cliquegraph = [[0, 1, 0, 1, 1],[1, 0, 1, 0, 1],[0, 1, 0, 0, 1],[1, 0, 0, 0, 1],[1, 1, 1, 1, 0]
]maximum_clique = find_maximum_clique(graph)print(f'最大团: {maximum_clique}')
最大团: [0, 1, 4]

时间复杂性

  • 解最大团问题的回溯算法所需的计算时间为 O ( n 2 n ) O(n 2^{n}) O(n2n)

相关文章:

【回溯算法】【Python实现】最大团问题

文章目录 [toc]问题描述回溯算法Python实现时间复杂性 问题描述 给定无向图 G ( V , E ) G (V , E) G(V,E),如果 U ⊆ V U \subseteq V U⊆V,且对任意 u u u, v ∈ U v \in U v∈U有 ( u , v ) ∈ E (u , v) \in E (u,v)∈E,则称…...

CMakeLists.txt语法规则:foreach 循环基本用法

一. 简介 cmake 中除了 if 条件判断之外,还支持循环语句,包括 foreach()循环、while()循环。 本文学习 CMakeLists.txt语法中的循环语句。 CMakeLists.txt语法中 有两种 循环实现方式:foreach循环与 while循环。 二. CMakeLists.txt语法规则…...

redis集群-主从机连接过程

首先从机需要发送自身携带的replid和offset向主机请求连接 replid:replid是所有主机在启动时会生成的一个固定标识,它表示当前复制流的id,当从机第一次请求连接时,主机会将自己的replid发送给从机,从机在接下来的请求…...

去哪里找高清视频素材?推荐几个短视频素材免费网站

在数字时代,视频内容的质量直接影响观众的吸引力和留存率。尤其是高清、4K视频素材和可商用素材,它们在提升视觉质量和叙事深度方面起到了至关重要的作用。以下是一些国内外的顶级视频素材网站,它们提供的资源将为您的创作提供极大的支持和灵…...

从互联网医院源码到搭建:开发视频问诊小程序的技术解析

如今,视频问诊小程序作为医疗服务的一种新形式,正逐渐受到人们的关注和青睐。今天,小编将为您详解视频问诊小程序的开发流程。 一、背景介绍 互联网医院源码是视频问诊小程序开发的基础,它提供了一套完整的医疗服务系统框架&…...

【Linux】常见指令(二)

mv指令 mv命令是move的缩写,可以用来移动文件或者将文件改名(move (rename) files) 是Linux系统下常用的命令,经常用来备份文件或者目录 功能: 1.剪切文件或者目录 2.对文件或者目录进行重命名 常用选项: -f &#xf…...

python元类与C#、Java中的反射

Python的元类和C#中的反射 在概念上有一定的相似性,但它们的目的和使用方式有所不同。 Python的元类: 元类(Metaclass)是控制类创建的类。它们定义了类的创建过程,可以修改类的行为。元类通过定制类的创建过程&…...

Echart.js绘制时间线并绑定事件

<template><div id"app"><!-- 定义一个具有指定宽高的容器&#xff0c;用于渲染图表 --><div ref"timeline" style"width: 800px; height: 600px;"></div></div> </template><script> import *…...

Flutter弹窗链-顺序弹出对话框

效果 前言 弹窗的顺序执行在App中是一个比较常见的应用场景。比如进入App首页&#xff0c;一系列的弹窗就会弹出。如果不做处理就会导致弹窗堆积的全部弹出&#xff0c;严重影响用户体验。 如果多个弹窗中又有判断逻辑&#xff0c;根据点击后需要弹出另一个弹窗&#xff0c;这…...

1290.二进制链表转整数

给你一个单链表的引用结点 head。链表中每个结点的值不是 0 就是 1。已知此链表是一个整数数字的二进制表示形式。 请你返回该链表所表示数字的 十进制值 。 示例 1&#xff1a; 输入&#xff1a;head [1,0,1] 输出&#xff1a;5 解释&#xff1a;二进制数 (101) 转化为十进制…...

P8803 [蓝桥杯 2022 国 B] 费用报销

P8803 [蓝桥杯 2022 国 B] 费用报销 分析 最值问题——DP 题意分析&#xff1a;从N张票据中选&#xff0c;且总价值不超过M的票据的最大价值&#xff08;背包问题&#xff09; K天限制 一、处理K天限制&#xff1a; 1.对于输入的是月 日的格式&#xff0c;很常用的方式是…...

【Android】Kotlin学习之Lambda表达式

java和kotlin对比 Lambda语法 Lambda隐形参数 it 也可以不使用指定的名称it, 可以 自定义 Lambda 使用下划线...

YOLOv5-7.0改进(四)添加EMA注意力机制

前言 关于网络中注意力机制的改进有很多种&#xff0c;本篇内容从EMA注意力机制开始&#xff01; 往期回顾 YOLOv5-7.0改进&#xff08;一&#xff09;MobileNetv3替换主干网络 YOLOv5-7.0改进&#xff08;二&#xff09;BiFPN替换Neck网络 YOLOv5-7.0改进&#xff08;三&…...

TCP协议的确认应答机制

TCP&#xff08;Transmission Control Protocol&#xff09;是一种面向连接的、可靠的、基于字节流的传输层协议&#xff0c;它在网络通信中扮演着至关重要的角色。其中&#xff0c;确认应答机制是TCP协议中的一个核心概念&#xff0c;它确保了数据的可靠传输。本文将详细介绍J…...

【论文阅读笔记】MAS-SAM: Segment Any Marine Animal with Aggregated Features

1.论文介绍 MAS-SAM: Segment Any Marine Animal with Aggregated Features MAS-SAM&#xff1a;利用聚合特征分割任何海洋动物 Paper Code(空的) 2.摘要 最近&#xff0c;分割任何模型&#xff08;SAM&#xff09;在生成高质量的对象掩模和实现零拍摄图像分割方面表现出卓越…...

C语言中的精确宽度类型

概述 在 C 语言标准库 <stdint.h> 中定义了一系列精确宽度的整数类型&#xff0c;这些类型保证了它们的位数宽度&#xff0c;从而允许编写跨平台的可移植代码。以下是一些常用的精确宽度整数类型&#xff1a; int8_t: 8位有符号整数uint8_t: 8位无符号整数int16_t: 16位…...

大数据比赛-环境搭建(一)

1、安装VMware Workstation 链接&#xff1a;https://pan.baidu.com/s/1IvSFzpnQFl3svWyCGRtEmg 提取码&#xff1a;ukpo 内有安装包及破解方式&#xff0c;安装教程。 2、下载Ubuntu系统 阿里巴巴开源镜像站-OPSX镜像站-阿里云开发者社区 (aliyun.com) 点击下载&#xff…...

微信小程序原生组件使用

1、video组件使用 <view class"live-video"><video id"myVideo" src"{{videoSrc}}" bindplay"onPlay" bindfullscreenchange"fullScreenChange" controls object- fit"contain"> </video&g…...

[数据集][目标检测]纸箱子检测数据集VOC+YOLO格式8375张1类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;8375 标注数量(xml文件个数)&#xff1a;8375 标注数量(txt文件个数)&#xff1a;8375 标注…...

2024HW Linux应急响应基础学习

首先展示关于Linux的关键目录&#xff0c;这是应急响应查看的关键&#xff1a; 常用命令 top //查看进程资源的占用情况 ps -aux //查看进程 直接写ps aux也可以 netstat -antpl //查看网络连接 ls -alh /proc/pid //查看某个pid对应的可执行程序 pid记得修改 lsof /…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读&#xff0c;综合法规核心要求、最新修正及企业合规要点&#xff1a; 一、法规背景与目标 生效与强制时间 发布于2023年8月31日&#xff08;OJ公报&…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...

【PX4飞控】mavros gps相关话题分析,经纬度海拔获取方法,卫星数锁定状态获取方法

使用 ROS1-Noetic 和 mavros v1.20.1&#xff0c; 携带经纬度海拔的话题主要有三个&#xff1a; /mavros/global_position/raw/fix/mavros/gpsstatus/gps1/raw/mavros/global_position/global 查看 mavros 源码&#xff0c;来分析他们的发布过程。发现前两个话题都对应了同一…...

验证redis数据结构

一、功能验证 1.验证redis的数据结构&#xff08;如字符串、列表、哈希、集合、有序集合等&#xff09;是否按照预期工作。 2、常见的数据结构验证方法&#xff1a; ①字符串&#xff08;string&#xff09; 测试基本操作 set、get、incr、decr 验证字符串的长度和内容是否正…...

HTML中各种标签的作用

一、HTML文件主要标签结构及说明 1. <&#xff01;DOCTYPE html> 作用&#xff1a;声明文档类型&#xff0c;告知浏览器这是 HTML5 文档。 必须&#xff1a;是。 2. <html lang“zh”>. </html> 作用&#xff1a;包裹整个网页内容&#xff0c;lang"z…...

Docker、Wsl 打包迁移环境

电脑需要开启wsl2 可以使用wsl -v 查看当前的版本 wsl -v WSL 版本&#xff1a; 2.2.4.0 内核版本&#xff1a; 5.15.153.1-2 WSLg 版本&#xff1a; 1.0.61 MSRDC 版本&#xff1a; 1.2.5326 Direct3D 版本&#xff1a; 1.611.1-81528511 DXCore 版本&#xff1a; 10.0.2609…...

简约商务通用宣传年终总结12套PPT模版分享

IOS风格企业宣传PPT模版&#xff0c;年终工作总结PPT模版&#xff0c;简约精致扁平化商务通用动画PPT模版&#xff0c;素雅商务PPT模版 简约商务通用宣传年终总结12套PPT模版分享:商务通用年终总结类PPT模版https://pan.quark.cn/s/ece1e252d7df...