当前位置: 首页 > news >正文

【回溯算法】【Python实现】最大团问题

文章目录

    • @[toc]
      • 问题描述
      • 回溯算法
      • `Python`实现
      • 时间复杂性

问题描述

  • 给定无向图 G = ( V , E ) G = (V , E) G=(V,E),如果 U ⊆ V U \subseteq V UV,且对任意 u u u v ∈ U v \in U vU ( u , v ) ∈ E (u , v) \in E (u,v)E,则称 U U U G G G的完全子图

  • G G G的完全子图 U U U G G G的一个团当且仅当 U U U不包含在 G G G的更大的完全子图中, G G G的最大团是指 G G G中所含顶点数最多的团

  • 如果 U ⊆ V U \subseteq V UV且对任意 u u u v ∈ U v \in U vU,有 ( u , v ) ∉ E (u , v) \notin E (u,v)/E,则称 U U U G G G的空子图

  • G G G的空子图 U U U G G G的独立集当且仅当 U U U不包含在 G G G的更大的空子图中, G G G的最大独立集是 G G G中所含顶点数最多的独立集

  • 对于任意无向图 G = ( V , E ) G = (V , E) G=(V,E),其补图 G ˉ = ( V ′ , E ′ ) \bar{G} = (V^{'} , E^{'}) Gˉ=(V,E)定义为: V ′ = V V^{'} = V V=V E ′ = { ( u , v ) ∣ ( u , v ) ∉ E } E^{'} = \set{(u , v) \mid (u , v) \notin E} E={(u,v)(u,v)/E}

  • 如果 U U U G G G的完全子图,则它是 G ˉ \bar{G} Gˉ的空子图,反之亦然,因此, G G G的团与 G ˉ \bar{G} Gˉ的独立集之间存在一一对应关系,特别地, U U U G G G的最大团,当且仅当 U U U G ˉ \bar{G} Gˉ的最大独立集

  • 无向图 G G G G G G的补图 G ˉ \bar{G} Gˉ如下图所示

1


回溯算法

  • G G G的最大团和最大独立集问题都可以看作图 G G G的顶点集 V V V的子集选取问题,因此,可用子集树表示问题的解空间,解最大团问题的回溯法与解装载问题的回溯法十分相似
  • 设当前扩展结点 Z Z Z位于解空间树的第 i i i层,在进入左子树前,必须确认从顶点 i i i到已选入的顶点集中每个顶点都有边相连,在进入右子树前,必须确认还有足够多的可选择顶点,使得算法有可能在右子树中找到更大的团

Python实现

def find_maximum_clique(graph):n = len(graph)vertices = list(range(n))max_clique = []def is_clique(current_clique):# 约束函数: 判断给定的顶点集合是否构成一个团(完全子图)for i in range(len(current_clique)):for j in range(i + 1, len(current_clique)):if not graph[current_clique[i]][current_clique[j]]:return Falsereturn Truedef bound(current_clique, vertices):# 限界函数return len(current_clique) + len(vertices)def backtrack(vertices, current_clique):nonlocal max_cliqueif not vertices:if len(current_clique) > len(max_clique):max_clique.clear()max_clique.extend(current_clique)returnvertex = vertices.pop(0)current_clique.append(vertex)neighbors = []for v in vertices:if graph[vertex][v]:neighbors.append(v)# 选择当前顶点并加入团if is_clique(current_clique):backtrack(neighbors, current_clique)# 恢复回溯前状态current_clique.pop()# 不选择当前顶点if bound(current_clique, vertices) > len(max_clique):backtrack(vertices, current_clique)backtrack(vertices, [])return max_cliquegraph = [[0, 1, 0, 1, 1],[1, 0, 1, 0, 1],[0, 1, 0, 0, 1],[1, 0, 0, 0, 1],[1, 1, 1, 1, 0]
]maximum_clique = find_maximum_clique(graph)print(f'最大团: {maximum_clique}')
最大团: [0, 1, 4]

时间复杂性

  • 解最大团问题的回溯算法所需的计算时间为 O ( n 2 n ) O(n 2^{n}) O(n2n)

相关文章:

【回溯算法】【Python实现】最大团问题

文章目录 [toc]问题描述回溯算法Python实现时间复杂性 问题描述 给定无向图 G ( V , E ) G (V , E) G(V,E),如果 U ⊆ V U \subseteq V U⊆V,且对任意 u u u, v ∈ U v \in U v∈U有 ( u , v ) ∈ E (u , v) \in E (u,v)∈E,则称…...

CMakeLists.txt语法规则:foreach 循环基本用法

一. 简介 cmake 中除了 if 条件判断之外,还支持循环语句,包括 foreach()循环、while()循环。 本文学习 CMakeLists.txt语法中的循环语句。 CMakeLists.txt语法中 有两种 循环实现方式:foreach循环与 while循环。 二. CMakeLists.txt语法规则…...

redis集群-主从机连接过程

首先从机需要发送自身携带的replid和offset向主机请求连接 replid:replid是所有主机在启动时会生成的一个固定标识,它表示当前复制流的id,当从机第一次请求连接时,主机会将自己的replid发送给从机,从机在接下来的请求…...

去哪里找高清视频素材?推荐几个短视频素材免费网站

在数字时代,视频内容的质量直接影响观众的吸引力和留存率。尤其是高清、4K视频素材和可商用素材,它们在提升视觉质量和叙事深度方面起到了至关重要的作用。以下是一些国内外的顶级视频素材网站,它们提供的资源将为您的创作提供极大的支持和灵…...

从互联网医院源码到搭建:开发视频问诊小程序的技术解析

如今,视频问诊小程序作为医疗服务的一种新形式,正逐渐受到人们的关注和青睐。今天,小编将为您详解视频问诊小程序的开发流程。 一、背景介绍 互联网医院源码是视频问诊小程序开发的基础,它提供了一套完整的医疗服务系统框架&…...

【Linux】常见指令(二)

mv指令 mv命令是move的缩写,可以用来移动文件或者将文件改名(move (rename) files) 是Linux系统下常用的命令,经常用来备份文件或者目录 功能: 1.剪切文件或者目录 2.对文件或者目录进行重命名 常用选项: -f &#xf…...

python元类与C#、Java中的反射

Python的元类和C#中的反射 在概念上有一定的相似性,但它们的目的和使用方式有所不同。 Python的元类: 元类(Metaclass)是控制类创建的类。它们定义了类的创建过程,可以修改类的行为。元类通过定制类的创建过程&…...

Echart.js绘制时间线并绑定事件

<template><div id"app"><!-- 定义一个具有指定宽高的容器&#xff0c;用于渲染图表 --><div ref"timeline" style"width: 800px; height: 600px;"></div></div> </template><script> import *…...

Flutter弹窗链-顺序弹出对话框

效果 前言 弹窗的顺序执行在App中是一个比较常见的应用场景。比如进入App首页&#xff0c;一系列的弹窗就会弹出。如果不做处理就会导致弹窗堆积的全部弹出&#xff0c;严重影响用户体验。 如果多个弹窗中又有判断逻辑&#xff0c;根据点击后需要弹出另一个弹窗&#xff0c;这…...

1290.二进制链表转整数

给你一个单链表的引用结点 head。链表中每个结点的值不是 0 就是 1。已知此链表是一个整数数字的二进制表示形式。 请你返回该链表所表示数字的 十进制值 。 示例 1&#xff1a; 输入&#xff1a;head [1,0,1] 输出&#xff1a;5 解释&#xff1a;二进制数 (101) 转化为十进制…...

P8803 [蓝桥杯 2022 国 B] 费用报销

P8803 [蓝桥杯 2022 国 B] 费用报销 分析 最值问题——DP 题意分析&#xff1a;从N张票据中选&#xff0c;且总价值不超过M的票据的最大价值&#xff08;背包问题&#xff09; K天限制 一、处理K天限制&#xff1a; 1.对于输入的是月 日的格式&#xff0c;很常用的方式是…...

【Android】Kotlin学习之Lambda表达式

java和kotlin对比 Lambda语法 Lambda隐形参数 it 也可以不使用指定的名称it, 可以 自定义 Lambda 使用下划线...

YOLOv5-7.0改进(四)添加EMA注意力机制

前言 关于网络中注意力机制的改进有很多种&#xff0c;本篇内容从EMA注意力机制开始&#xff01; 往期回顾 YOLOv5-7.0改进&#xff08;一&#xff09;MobileNetv3替换主干网络 YOLOv5-7.0改进&#xff08;二&#xff09;BiFPN替换Neck网络 YOLOv5-7.0改进&#xff08;三&…...

TCP协议的确认应答机制

TCP&#xff08;Transmission Control Protocol&#xff09;是一种面向连接的、可靠的、基于字节流的传输层协议&#xff0c;它在网络通信中扮演着至关重要的角色。其中&#xff0c;确认应答机制是TCP协议中的一个核心概念&#xff0c;它确保了数据的可靠传输。本文将详细介绍J…...

【论文阅读笔记】MAS-SAM: Segment Any Marine Animal with Aggregated Features

1.论文介绍 MAS-SAM: Segment Any Marine Animal with Aggregated Features MAS-SAM&#xff1a;利用聚合特征分割任何海洋动物 Paper Code(空的) 2.摘要 最近&#xff0c;分割任何模型&#xff08;SAM&#xff09;在生成高质量的对象掩模和实现零拍摄图像分割方面表现出卓越…...

C语言中的精确宽度类型

概述 在 C 语言标准库 <stdint.h> 中定义了一系列精确宽度的整数类型&#xff0c;这些类型保证了它们的位数宽度&#xff0c;从而允许编写跨平台的可移植代码。以下是一些常用的精确宽度整数类型&#xff1a; int8_t: 8位有符号整数uint8_t: 8位无符号整数int16_t: 16位…...

大数据比赛-环境搭建(一)

1、安装VMware Workstation 链接&#xff1a;https://pan.baidu.com/s/1IvSFzpnQFl3svWyCGRtEmg 提取码&#xff1a;ukpo 内有安装包及破解方式&#xff0c;安装教程。 2、下载Ubuntu系统 阿里巴巴开源镜像站-OPSX镜像站-阿里云开发者社区 (aliyun.com) 点击下载&#xff…...

微信小程序原生组件使用

1、video组件使用 <view class"live-video"><video id"myVideo" src"{{videoSrc}}" bindplay"onPlay" bindfullscreenchange"fullScreenChange" controls object- fit"contain"> </video&g…...

[数据集][目标检测]纸箱子检测数据集VOC+YOLO格式8375张1类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;8375 标注数量(xml文件个数)&#xff1a;8375 标注数量(txt文件个数)&#xff1a;8375 标注…...

2024HW Linux应急响应基础学习

首先展示关于Linux的关键目录&#xff0c;这是应急响应查看的关键&#xff1a; 常用命令 top //查看进程资源的占用情况 ps -aux //查看进程 直接写ps aux也可以 netstat -antpl //查看网络连接 ls -alh /proc/pid //查看某个pid对应的可执行程序 pid记得修改 lsof /…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...