【回溯算法】【Python实现】最大团问题
文章目录
- @[toc]
- 问题描述
- 回溯算法
- `Python`实现
- 时间复杂性
文章目录
- @[toc]
- 问题描述
- 回溯算法
- `Python`实现
- 时间复杂性
问题描述
-
给定无向图 G = ( V , E ) G = (V , E) G=(V,E),如果 U ⊆ V U \subseteq V U⊆V,且对任意 u u u, v ∈ U v \in U v∈U有 ( u , v ) ∈ E (u , v) \in E (u,v)∈E,则称 U U U是 G G G的完全子图
-
G G G的完全子图 U U U是 G G G的一个团当且仅当 U U U不包含在 G G G的更大的完全子图中, G G G的最大团是指 G G G中所含顶点数最多的团
-
如果 U ⊆ V U \subseteq V U⊆V且对任意 u u u, v ∈ U v \in U v∈U,有 ( u , v ) ∉ E (u , v) \notin E (u,v)∈/E,则称 U U U是 G G G的空子图
-
G G G的空子图 U U U是 G G G的独立集当且仅当 U U U不包含在 G G G的更大的空子图中, G G G的最大独立集是 G G G中所含顶点数最多的独立集
-
对于任意无向图 G = ( V , E ) G = (V , E) G=(V,E),其补图 G ˉ = ( V ′ , E ′ ) \bar{G} = (V^{'} , E^{'}) Gˉ=(V′,E′)定义为: V ′ = V V^{'} = V V′=V, E ′ = { ( u , v ) ∣ ( u , v ) ∉ E } E^{'} = \set{(u , v) \mid (u , v) \notin E} E′={(u,v)∣(u,v)∈/E}
-
如果 U U U是 G G G的完全子图,则它是 G ˉ \bar{G} Gˉ的空子图,反之亦然,因此, G G G的团与 G ˉ \bar{G} Gˉ的独立集之间存在一一对应关系,特别地, U U U是 G G G的最大团,当且仅当 U U U是 G ˉ \bar{G} Gˉ的最大独立集
-
无向图 G G G和 G G G的补图 G ˉ \bar{G} Gˉ如下图所示
回溯算法
- 图 G G G的最大团和最大独立集问题都可以看作图 G G G的顶点集 V V V的子集选取问题,因此,可用子集树表示问题的解空间,解最大团问题的回溯法与解装载问题的回溯法十分相似
- 设当前扩展结点 Z Z Z位于解空间树的第 i i i层,在进入左子树前,必须确认从顶点 i i i到已选入的顶点集中每个顶点都有边相连,在进入右子树前,必须确认还有足够多的可选择顶点,使得算法有可能在右子树中找到更大的团
Python
实现
def find_maximum_clique(graph):n = len(graph)vertices = list(range(n))max_clique = []def is_clique(current_clique):# 约束函数: 判断给定的顶点集合是否构成一个团(完全子图)for i in range(len(current_clique)):for j in range(i + 1, len(current_clique)):if not graph[current_clique[i]][current_clique[j]]:return Falsereturn Truedef bound(current_clique, vertices):# 限界函数return len(current_clique) + len(vertices)def backtrack(vertices, current_clique):nonlocal max_cliqueif not vertices:if len(current_clique) > len(max_clique):max_clique.clear()max_clique.extend(current_clique)returnvertex = vertices.pop(0)current_clique.append(vertex)neighbors = []for v in vertices:if graph[vertex][v]:neighbors.append(v)# 选择当前顶点并加入团if is_clique(current_clique):backtrack(neighbors, current_clique)# 恢复回溯前状态current_clique.pop()# 不选择当前顶点if bound(current_clique, vertices) > len(max_clique):backtrack(vertices, current_clique)backtrack(vertices, [])return max_cliquegraph = [[0, 1, 0, 1, 1],[1, 0, 1, 0, 1],[0, 1, 0, 0, 1],[1, 0, 0, 0, 1],[1, 1, 1, 1, 0]
]maximum_clique = find_maximum_clique(graph)print(f'最大团: {maximum_clique}')
最大团: [0, 1, 4]
时间复杂性
- 解最大团问题的回溯算法所需的计算时间为 O ( n 2 n ) O(n 2^{n}) O(n2n)
相关文章:

【回溯算法】【Python实现】最大团问题
文章目录 [toc]问题描述回溯算法Python实现时间复杂性 问题描述 给定无向图 G ( V , E ) G (V , E) G(V,E),如果 U ⊆ V U \subseteq V U⊆V,且对任意 u u u, v ∈ U v \in U v∈U有 ( u , v ) ∈ E (u , v) \in E (u,v)∈E,则称…...

CMakeLists.txt语法规则:foreach 循环基本用法
一. 简介 cmake 中除了 if 条件判断之外,还支持循环语句,包括 foreach()循环、while()循环。 本文学习 CMakeLists.txt语法中的循环语句。 CMakeLists.txt语法中 有两种 循环实现方式:foreach循环与 while循环。 二. CMakeLists.txt语法规则…...

redis集群-主从机连接过程
首先从机需要发送自身携带的replid和offset向主机请求连接 replid:replid是所有主机在启动时会生成的一个固定标识,它表示当前复制流的id,当从机第一次请求连接时,主机会将自己的replid发送给从机,从机在接下来的请求…...

去哪里找高清视频素材?推荐几个短视频素材免费网站
在数字时代,视频内容的质量直接影响观众的吸引力和留存率。尤其是高清、4K视频素材和可商用素材,它们在提升视觉质量和叙事深度方面起到了至关重要的作用。以下是一些国内外的顶级视频素材网站,它们提供的资源将为您的创作提供极大的支持和灵…...

从互联网医院源码到搭建:开发视频问诊小程序的技术解析
如今,视频问诊小程序作为医疗服务的一种新形式,正逐渐受到人们的关注和青睐。今天,小编将为您详解视频问诊小程序的开发流程。 一、背景介绍 互联网医院源码是视频问诊小程序开发的基础,它提供了一套完整的医疗服务系统框架&…...

【Linux】常见指令(二)
mv指令 mv命令是move的缩写,可以用来移动文件或者将文件改名(move (rename) files) 是Linux系统下常用的命令,经常用来备份文件或者目录 功能: 1.剪切文件或者目录 2.对文件或者目录进行重命名 常用选项: -f …...
python元类与C#、Java中的反射
Python的元类和C#中的反射 在概念上有一定的相似性,但它们的目的和使用方式有所不同。 Python的元类: 元类(Metaclass)是控制类创建的类。它们定义了类的创建过程,可以修改类的行为。元类通过定制类的创建过程&…...

Echart.js绘制时间线并绑定事件
<template><div id"app"><!-- 定义一个具有指定宽高的容器,用于渲染图表 --><div ref"timeline" style"width: 800px; height: 600px;"></div></div> </template><script> import *…...

Flutter弹窗链-顺序弹出对话框
效果 前言 弹窗的顺序执行在App中是一个比较常见的应用场景。比如进入App首页,一系列的弹窗就会弹出。如果不做处理就会导致弹窗堆积的全部弹出,严重影响用户体验。 如果多个弹窗中又有判断逻辑,根据点击后需要弹出另一个弹窗,这…...

1290.二进制链表转整数
给你一个单链表的引用结点 head。链表中每个结点的值不是 0 就是 1。已知此链表是一个整数数字的二进制表示形式。 请你返回该链表所表示数字的 十进制值 。 示例 1: 输入:head [1,0,1] 输出:5 解释:二进制数 (101) 转化为十进制…...

P8803 [蓝桥杯 2022 国 B] 费用报销
P8803 [蓝桥杯 2022 国 B] 费用报销 分析 最值问题——DP 题意分析:从N张票据中选,且总价值不超过M的票据的最大价值(背包问题) K天限制 一、处理K天限制: 1.对于输入的是月 日的格式,很常用的方式是…...

【Android】Kotlin学习之Lambda表达式
java和kotlin对比 Lambda语法 Lambda隐形参数 it 也可以不使用指定的名称it, 可以 自定义 Lambda 使用下划线...

YOLOv5-7.0改进(四)添加EMA注意力机制
前言 关于网络中注意力机制的改进有很多种,本篇内容从EMA注意力机制开始! 往期回顾 YOLOv5-7.0改进(一)MobileNetv3替换主干网络 YOLOv5-7.0改进(二)BiFPN替换Neck网络 YOLOv5-7.0改进(三&…...

TCP协议的确认应答机制
TCP(Transmission Control Protocol)是一种面向连接的、可靠的、基于字节流的传输层协议,它在网络通信中扮演着至关重要的角色。其中,确认应答机制是TCP协议中的一个核心概念,它确保了数据的可靠传输。本文将详细介绍J…...

【论文阅读笔记】MAS-SAM: Segment Any Marine Animal with Aggregated Features
1.论文介绍 MAS-SAM: Segment Any Marine Animal with Aggregated Features MAS-SAM:利用聚合特征分割任何海洋动物 Paper Code(空的) 2.摘要 最近,分割任何模型(SAM)在生成高质量的对象掩模和实现零拍摄图像分割方面表现出卓越…...
C语言中的精确宽度类型
概述 在 C 语言标准库 <stdint.h> 中定义了一系列精确宽度的整数类型,这些类型保证了它们的位数宽度,从而允许编写跨平台的可移植代码。以下是一些常用的精确宽度整数类型: int8_t: 8位有符号整数uint8_t: 8位无符号整数int16_t: 16位…...

大数据比赛-环境搭建(一)
1、安装VMware Workstation 链接:https://pan.baidu.com/s/1IvSFzpnQFl3svWyCGRtEmg 提取码:ukpo 内有安装包及破解方式,安装教程。 2、下载Ubuntu系统 阿里巴巴开源镜像站-OPSX镜像站-阿里云开发者社区 (aliyun.com) 点击下载ÿ…...

微信小程序原生组件使用
1、video组件使用 <view class"live-video"><video id"myVideo" src"{{videoSrc}}" bindplay"onPlay" bindfullscreenchange"fullScreenChange" controls object- fit"contain"> </video&g…...

[数据集][目标检测]纸箱子检测数据集VOC+YOLO格式8375张1类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):8375 标注数量(xml文件个数):8375 标注数量(txt文件个数):8375 标注…...

2024HW Linux应急响应基础学习
首先展示关于Linux的关键目录,这是应急响应查看的关键: 常用命令 top //查看进程资源的占用情况 ps -aux //查看进程 直接写ps aux也可以 netstat -antpl //查看网络连接 ls -alh /proc/pid //查看某个pid对应的可执行程序 pid记得修改 lsof /…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...

STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...

小智AI+MCP
什么是小智AI和MCP 如果还不清楚的先看往期文章 手搓小智AI聊天机器人 MCP 深度解析:AI 的USB接口 如何使用小智MCP 1.刷支持mcp的小智固件 2.下载官方MCP的示例代码 Github:https://github.com/78/mcp-calculator 安这个步骤执行 其中MCP_ENDPOI…...

【技巧】dify前端源代码修改第一弹-增加tab页
回到目录 【技巧】dify前端源代码修改第一弹-增加tab页 尝试修改dify的前端源代码,在知识库增加一个tab页"HELLO WORLD",完成后的效果如下 [gif01] 1. 前端代码进入调试模式 参考 【部署】win10的wsl环境下启动dify的web前端服务 启动调试…...

NineData数据库DevOps功能全面支持百度智能云向量数据库 VectorDB,助力企业 AI 应用高效落地
NineData 的数据库 DevOps 解决方案已完成对百度智能云向量数据库 VectorDB 的全链路适配,成为国内首批提供 VectorDB 原生操作能力的服务商。此次合作聚焦 AI 开发核心场景,通过标准化 SQL 工作台与细粒度权限管控两大能力,助力企业安全高效…...