当前位置: 首页 > news >正文

Lia 原理

训练阶段

论文流程:
在这里插入图片描述
具体实现:
在这里插入图片描述
通过latent space传递运动信息,实现分两部分。
1)image space->latent space
将源图像映射到隐空间编码。X_s (source image )映射到编码Z_sr,通过W_rd方向上的变化,得到新的编码Z_sd。
X_s映射到编码Z_sr:通过编码器E映射成512维向量

在这里插入图片描述

W_rd: driving image通过编码器E 映射成512维向量,然后通过MLP映射成20维视觉向量A_rd,与字典D中的向量结合得到w_rd,字典D包含了代表不同视觉变换的正交基,字典D是训练中学习得到的,每个向量有特定语意。

input_diag = torch.diag_embed(input)  # alpha, diagonal matrix,20* 20对角矩阵
out = torch.matmul(input_diag, Q.T) #a_i*d_i
out = torch.sum(out, dim=1)

2)latent space->flow field space
通过编码器得到dense optical flow field,对图像进行warp
源图像特征与上一步得到的Z_sd逐级结合,上采样,得到输出图片X_sd。
代码中实现细节如下:
source和target id 相同时:

h_motion = [h_motion_target]
directions = self.direction(h_motion)
latent = wa + directions 

source和target id 不相同时:

h_motion = [h_motion_target, h_motion_source, h_start]
h_start :driving的初始状态,默认需要与source同样的pose。
directions_target = self.direction(h_motion_target)   #
latent = wa + (directions_target - directions_start) + directions_source

实际含义:
1)h_motion_:将图片通过share parameters编码成Z_sr(512维向量)
2)directions_
: 将Zs_r映射成Zs_d(20维向量)
3)latent:source与target的相对/绝对位移信息

loss模块:

#criterion_vgg:vgg19特征层面的距离
#感知损失,计算img_target_recon与img_target原图做一个特征金字塔计算,然后送到vgg中,分别计算图像特征,最后两个特征张量做L1Loss
vgg_loss = self.criterion_vgg(img_target_recon, img_target).mean()
#图片像素层面的距离
l1_loss = F.l1_loss(img_target_recon, img_target)
#img_recon_pred为重演结果走了一遍判别器
#g_nonsaturating_loss=F.softplus(-img_recon_pred).mean()
#这种操作常见于生成对抗网络(GAN)的损失函数计算中,用于衡量假数据的质量,通常与真实数据的预测结果一起使用,以训练网络生成更接近真实数据分布的数据
gan_g_loss = self.g_nonsaturating_loss(img_recon_pred)g_loss = vgg_loss + l1_loss + gan_g_loss

其中vgg_loss与l1_loss,前提均需要source和target id 相同。

推断阶段

若id相同,采用与训练阶段范式一致的absolute transfer。
若id不同,则采用relative transfer,即将第一帧与驱动帧(target)的变化差异施加到源帧(source)上,并且要求源人脸和第一帧的pose要相似。

相关文章:

Lia 原理

训练阶段 论文流程: 具体实现: 通过latent space传递运动信息,实现分两部分。 1)image space->latent space 将源图像映射到隐空间编码。X_s (source image )映射到编码Z_sr,通过W_rd方向上的变化,得到新的编码Z…...

文本批量操作技巧:内容查找不再繁琐,自动化批量移动至指定文件夹

在文本处理和信息管理的日常工作中,我们经常需要处理大量的文件和数据。面对这些海量的信息,如何快速而准确地查找特定的内容,并将它们批量移动至指定的文件夹,成为了一项关键的技能。本文将介绍办公提效工具一些实用的文本批量操…...

[数据结构]动画详解单链表

💖💖💖欢迎来到我的博客,我是anmory💖💖💖 又和大家见面了 欢迎来到动画详解数据结构系列 用通俗易懂的动画的动画使数据结构可视化 先来自我推荐一波 个人网站欢迎访问以及捐款 推荐阅读 如何低…...

图片批量管理迈入智能新时代:一键输入关键词,自动生成并保存惊艳图片,轻松开启创意之旅!

在数字化时代,图片已成为我们表达创意、记录生活、传递信息的重要工具。然而,随着图片数量的不断增加,如何高效、便捷地管理这些图片,却成为了一个令人头疼的问题。 第一步,进入首助编辑高手主页面,在上方…...

【硬件模块】ESP-01SWiFi模块基于AT指令详解(WiFi,TCP/IP,MQTT)

ESP-01S ESP-01S是由安信可科技开发的一款Wi-Fi模块。其核心处理器是ESP8266,该处理器在较小尺寸的封装中集成了业界领先的Tensilica L106超低功耗32位微型MCU,带有16位精简模式,主频支持80MHz和160MHz,并集成了Wi-Fi MAC/BB/RF/P…...

数据结构之单单单——链表

目录 一.链表 1)链表的概念 2)链表的结构 二.单链表的实现 三.链表的分类 1)单向或者双向 2)带头或不带头 3)循环或非循环 一.链表 1)链表的概念 链表(Linked List)是一种…...

【Linux笔记】 基础指令(二)

风住尘香花已尽 日晚倦梳头 重命名、剪切指令 -- mv 简介: mv 命令是 move 的缩写,可以用来移动文件或者将文件改名,是 Linux 系统下常用的命令,经常用来备份文件或者目录 语法: mv [选项] 源文件或目录 目标文件或目录…...

软件全套资料梳理(需求、开发、实施、运维、安全、测试、交付、认证、评审、投标等)

软件全套精华资料包清单部分文件列表: 工作安排任务书,可行性分析报告,立项申请审批表,产品需求规格说明书,需求调研计划,用户需求调查单,用户需求说明书,概要设计说明书&#xff0c…...

javacv实时解析pcm音频流

javacv实时解析pcm音频流 解析代码 try (ByteArrayInputStream inputStream new ByteArrayInputStream(bytes);){FFmpegFrameGrabber grabber new FFmpegFrameGrabber(inputStream);// PCM S16LE 格式grabber.setFormat("s16le");// 采样率grabber.setSampleRate(1…...

Matlab|考虑极端天气线路脆弱性的配电网分布式电源和储能优化配置模型

1主要内容 程序主要参考《考虑极端天气线路脆弱性的配电网分布式电源配置优化模型-马宇帆》,针对极端天气严重威胁配电网安全稳定运行的问题。基于微气象、微地形对配电网的线路脆弱性进行分析,然后进行分布式电源接入位置与极端天气的关联性分析&#…...

【Python基础】装饰器(3848字)

文章目录 [toc]闭包什么是装饰器装饰器示例不使用装饰器语法使用装饰器语法 装饰器传参带参数的装饰器类装饰器魔术方法\__call__()类装饰器示例带参数类装饰器property装饰器分页操作商品价格操作 个人主页:丷从心 系列专栏:Python基础 学习指南&…...

十、Redis内存回收策略和机制

1、Redis的内存回收 在Redis中可以设置key的过期时间,以期可以让Redis回收内存,循环使用。在Redis中有4个命令可以设置Key的过期时间。分别为 expire、pexpire、expireat、pexpireat。 1.1、expire expire key ttl:将key的过期时间设置为tt…...

Ansible --- playbook 脚本+inventory 主机清单

一 inventory 主机清单 Inventory支持对主机进行分组,每个组内可以定义多个主机,每个主机都可以定义在任何一个或 多个主机组内。 如果是名称类似的主机,可以使用列表的方式标识各个主机。vim /etc/ansible/hosts[webservers]192.168.10.1…...

【hive】transform脚本

文档地址:https://cwiki.apache.org/confluence/display/Hive/LanguageManualTransform 一、介绍二、实现1.脚本上传到本地2.脚本上传到hdfs 三、几个需要注意的点1.脚本名不要写全路径2.using后面语句中,带不带"python"的问题3.py脚本Shebang…...

5款可用于LLMs的爬虫工具/方案

5款可用于LLMs的爬虫工具/方案 Crawl4AI 功能: 提取语义标记的数据块为JSON格式,提供干净的HTML和Markdown文件。 用途: 适用于RAG(检索增强生成)、微调以及AI聊天机器人的开发。 特点: 高效数据提取,支持LLM格式,多U…...

投影、选择转SQL语言

使用以下两个表进行举例,第一个表为R表,第二个表为S表 R.AR.BR.C123456789 S.AS.BS.C101112131415161718 1、投影转SQL语言: 兀 A,B,C (R) 等价于select A,B,C from R 解释: 兀:相当于select (R):相当于from R…...

系统加固-自用

一、windows 1、概述 (1)、权限最高:system(系统账户),权限比administrator权限还高 (2)、常见操作系统安全漏洞类型 缓冲区溢出漏洞TCP/IP协议漏洞web应用安全漏洞开放端口的安全漏洞 2、系统安全加固方法 (1)、系统不显示上次登录的用户名 进入…...

Java面试题:阐述Java中的自动装箱与拆箱机制,以及使用它们时可能遇到的性能问题

在Java中,自动装箱(Autoboxing)和拆箱(Unboxing)是Java 5引入的特性,它们允许基本数据类型和对应的包装类之间的自动转换。 自动装箱 自动装箱是指将基本数据类型(如int、double等&#xff09…...

初识sql注入--手工注入

目录 可能使用的sql函数 入侵网站方式 1、文件上传漏洞 2、rce 3、sql注入 SQL注入 什么是sql注入 进行SQL注入 实验环境 开始实验(使用information_shema数据库) 1、进入靶场 2、报列数 下面来解释一下为什么要照上面SQL语句写 url编码 单…...

OceanBase 缺少 dbms_obfuscation_toolkit.md5 包函数的解决方案

因为 dbms_obfuscation_toolkit.md5 是一个 Oracle 不推荐继续使用的函数,所以 OceanBase 没有对其兼容,取而代之的是兼容了 dbms_crypto.hash,其用法详见这篇 KB 但是,并不是所有业务都接受修改源码,因为复杂系统里&…...

XML Group端口详解

在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...

小木的算法日记-多叉树的递归/层序遍历

🌲 从二叉树到森林:一文彻底搞懂多叉树遍历的艺术 🚀 引言 你好,未来的算法大神! 在数据结构的世界里,“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的,它…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 ,不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源(最常用) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

TJCTF 2025

还以为是天津的。这个比较容易,虽然绕了点弯,可还是把CP AK了,不过我会的别人也会,还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...