当前位置: 首页 > news >正文

Streamlit 工具记录

Streamlit 是基于 Python 的 Web 应用程序框架,可视化数据,分析结果。

Streamlit 是一个开源库,可在短时间内开发机器学习可视化仪表板。只需几行代码就可以构部署强大的数据应用程序。Streamlit 可将仪表板的开发时间从几天缩短至几小时。

第一个程序,在终端中运行streamlit run demo_01.py

import streamlit as st
st.write('Hello, world!')

将微件视为变量

Streamlit 没有回调函数,每个交互只能自上而下重新运行脚本,这样产生了真正整洁的代码。

x = st.slider('x')
st.write(x, 'squared is', x * x)

重用数据和计算

如果下载了大量数据或执行复杂计算,关键是在运行中安全地重用信息。Streamlit 引入了一个缓存原语,这是一个持久的,默认情况下不变的数据存储区,使Streamlit 安全地重用信息。

使用 st.cache 在 Streamlit 运行中持久化数据。

read_and_cache_csv = st.cache(pd.read_csv)
BUCKET = "https://streamlit-self-driving.s3-us-west-2.amazonaws.com/"
data = read_and_cache_csv(BUCKET + "labels.csv.gz", nrows=1000)
desired_label = st.selectbox('Filter to:', ['car', 'truck'])
st.write(data[data.label == desired_label])

Streamlit是这样工作的:

1. 为每个用户交互从头开始运行整个脚本。

2. Streamlit为每个变量配置指定微件状态的最新值。

3. 缓存允许Streamlit跳过冗余的数据提取和计算步骤。

Streamlit应用程序是纯Python文件,可以同时使用自己喜欢的编辑器和调试器。

Streamlit提供立即模式实时编码环境,只需在Streamlit检测到源文件更改时单击“始终重新运行”。

缓存简化了计算流程的设置,链接缓存函数会自动创建高效的计算流程:

@st.cache
def load_metadata():DATA_URL = "https://streamlit-self-driving.s3-us-west-2.amazonaws.com/labels.csv.gz"return pd.read_csv(DATA_URL, nrows=1000)
@st.cache
def create_summary(metadata, summary_type):one_hot_encoded = pd.get_dummies(metadata[["frame", "label"]], columns=["label"])return getattr(one_hot_encoded.groupby(["frame"]), summary_type)()
# Piping one st.cache function into another forms a computation DAG.
summary_type = st.selectbox("Type of summary:", ["sum", "any"])
metadata = load_metadata()
summary = create_summary(metadata, summary_type)
st.write('## Metadata', metadata, '## Summary', summary)

一般的程序是load_metadata→create_summary;每次运行脚本时,Streamlit只重新计算所需流程的任何子集,以获得准确信息。

Streamlit是为GPU构建的,允许直接访问机器原语(如TensorFlow和Pytorch),并对这些库进行补充。例如,Streamlit的缓存存储了所有英伟达名人的照片GAN,当用户更新滑块时,这种方法几乎可以即时进行推理。

参考:

百度安全验证

相关文章:

Streamlit 工具记录

Streamlit 是基于 Python 的 Web 应用程序框架,可视化数据,分析结果。 Streamlit 是一个开源库,可在短时间内开发机器学习可视化仪表板。只需几行代码就可以构部署强大的数据应用程序。Streamlit 可将仪表板的开发时间从几天缩短至几小时。 …...

GreenPlum小结

什么是GreenPlum?GreenPlum是业界最快最高性价比的关系型分布式数据库,它在开源的PostgreSQL的基础上采用MPP架构(Massive Parallel Processing,海量并行处理),具有强大的大规模数据分析任务处理能力。GreenPlum作为大数据融合存储…...

C语言中数组和指针

文章目录前言一、指针的概念二、指针的大小三、指针的用法1.指针指向变量2.指针指向数组3.指针指向函数总结前言 本文将给大家带来C语言中非常重要的两个知识点,指针和数组。 一、指针的概念 指针,是C语言中的一个重要概念及其特点,也是掌…...

Leetcode.剑指 Offer II 022 链表中环的入口节点

题目链接 Leetcode.剑指 Offer II 022 链表中环的入口节点 mid 题目描述 给定一个链表,返回链表开始入环的第一个节点。 从链表的头节点开始沿着 next指针进入环的第一个节点为环的入口节点。如果链表无环,则返回 null。 为了表示给定链表中的环&#…...

4种不同编程语言的打印方式

意义 打印方式是编程中不可或缺的一部分,它可以帮助开发人员有效地调试和测试代码,并提供有用的信息来监视程序的运行状态和性能。 编程语言中的打印方式是指将程序输出到终端或控制台上进行显示。这个功能在编程中非常重要,因为它可以帮助开…...

websocket介绍

我们聊聊轮询技术,什么是轮询?轮询就是在特定的时间间隔,由浏览器对服务器发出HTTP请求,然后由服务器返回最新的数据给客户端的浏览器。 轮询分为两种: 短轮询:通过不断的向服务端发送数据,客户端发送Request,服务端直接返回Response(不管服务端数据有没有改变)。长轮…...

Educational Codeforces Round 144 (Rated for Div. 2),C,D

C. Maximum Set 思路: 我们求最大数组,显然是L一直乘2,直到再乘2就越过区间位置。我们说过,再乘一个2就不行,那么我们除一个2,换句话说,就是再乘一个4就不行了。发现,我们可能有机会乘一个3&a…...

【redis学习篇】Redis三种持久化方式详解

官方文档 一、Redis持久性 Redis如何将数据写入磁盘 持久性是指将数据写入持久存储,如固态磁盘(SSD)。Redis提供了一系列持久性选项。其中包括: RDB(快照):RDB持久性以指定的时间间隔执行数据…...

垃圾回收中的分代年龄

为什么CMS里的分代年龄是6而不是15 CMS (Concurrent Mark Sweep) 是一种基于分代的垃圾收集器,其中分代年龄指的是一个对象在年轻代中经历了多少次垃圾收集。在 CMS 中,当一个对象的分代年龄达到阈值时,就会被晋升到老年代中。 在 CMS 中&a…...

蓝桥杯-左移右移(2022国赛)

蓝桥杯-左移右移1、问题描述2、解题思路与代码实现2.1 方法一:使用LinkedList双向链表实现(50%)2.2 方法二:使用HashMap左右临界值实现(100%)1、问题描述 小蓝有一个长度为 N 的数组, 初始时从左到右依次是 1,2,3,…N 。 之后小蓝对这个数组进行了 M 次操…...

你还在手撸SQL?ChatGPT笑晕在厕所

文章目录你还在手撸SQL?ChatGPT笑晕在厕所一、背景二、面向Chat编程1. 数据库设计2. 建表语句3. 加中文注释4. 数据模拟5. 查询成绩6. 修改课程任课老师7. 删除课程8. 删除一个有关联数据的课程总结你还在手撸SQL?ChatGPT笑晕在厕所 一、背景 经典3表设…...

【Redis】Redis慢查询

文章目录慢查询记录慢查询两个配置参数修改配置参数慢查询日志慢查询记录 我们都知道像mysql等持久化数据库会有慢查询日志,其实Redis中也有慢查询日志的功能。慢查询就是系统在执行命令的前后计算每条命令的执行时间,如果超过我们预设的时间&#xff0c…...

【Kubernetes】第二十一篇 - k8s 项目部署流程和操作梳理

一,前言 上一篇,介绍了 k8s 污点和容忍度; 在了解前面 k8s 介绍之后,设计并完成一个前后端项目的部署和持续集成; 本篇,介绍基于 k8s 项目部署流程设计; 二,项目部署流程设计 本…...

推荐系统[九]项目技术细节讲解z2:搜索Query理解[Term Weight、Query 改写、同义词扩写]和语义召回技术

搜索Query理解和语义召回技术 随着用户规模和产品的发展, 搜索面临着越来越大的 query 长尾化挑战,query 理解是提升搜索召回质量的关键。本次将介绍搜索在 query term weighting,同义词扩展,query 改写,以及语义召回等方向上的实践方法和落地情况。 1.面临问题:长尾 qu…...

【项目精选】基于SSH的医院在线挂号系统(视频+论文+源码)

点击下载源码 医院挂号系统主要用于实现医院的挂号,前台基本功能包括:用户注册、用户登录、医院查询、挂号、取消挂号、修改个人信息、退出等。 后台基本功能包括:系统管理员登录、医院管理、科室管理、公告管理、退出系统等。 本系统结构如…...

Pandas库:从入门到应用(一)

一、Pandas简介 pandas是 Python 的核⼼数据分析⽀持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。pandas是Python进⾏数据分析的必备⾼级⼯具。 pandas的主要数据结构是 **Series(**⼀维数据)与 DataFrame (⼆维数据…...

MySQL中concat()、concat_ws()、group_concat()函数使用

在平时工作中,经常记不清或者记混他们的用法,正好有时间就记录一下~concat()函数语法:concat(str1, str2, int1...)例如执行sql:SELECT CONCAT(id,USERNAME,USER_PHONE) FROM tb_user输出查询结果为: 1test15216756754…...

【JavaEE初阶】第四节.文件操作 和 IO (上篇)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、文件 1.1 文件的概念 1.2 文件的路径二、 Java中文件系统操作 2.1 File类的属性 2.2 File类的构造方法 2.3 File类的方法 …...

开源免费堡垒机Teleport堡垒机的安装

准备:纯净centos7系统一个作为堡垒机,若干个linux系统或windows系统服务器作为受保护的服务器 堡垒机IP:192.168.1.15 服务器IP:192.168.1.10 1、teleport安装 下载地址: https://www.tp4a.com/static/download/teleport-server-linux-x64-3.6.4-b3.tar.gz xshell上传压缩…...

图形报表ECharts

图形报表ECharts1 图形报表ECharts1.1 ECharts简介-富客户端图表库ECharts缩写来自Enterprise Charts,商业级数据图表,是百度的一个开源的使用JavaScript实现的数据可视化工具,可以流畅的运行在PC和移动设备上,兼容当前绝大部分浏…...

7.4.分块查找

一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

数据结构第5章:树和二叉树完全指南(自整理详细图文笔记)

名人说&#xff1a;莫道桑榆晚&#xff0c;为霞尚满天。——刘禹锡&#xff08;刘梦得&#xff0c;诗豪&#xff09; 原创笔记&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 上一篇&#xff1a;《数据结构第4章 数组和广义表》…...