当前位置: 首页 > news >正文

TensorRT-llm入门

一、目录

  1. 作用
  2. TensorRT-llm 为什么快?
  3. 流程
  4. TensorRT-LLM 环境配置
  5. 大模型 转换、编译与推理
  6. 如何选择量化类型?
  7. lora 大模型如何合并?
  8. lora 大模型如何编译,使用?
  9. 推理加速模型 tensorrRT-LLM、Vllm、fasterTransformer、BetterTransformer 的对比
  10. 如何优化 LLM 模型推理中的访存密集问题?

二、实现

  1. 作用
    NVIDIA提出, TensorRT-LLM 默认采用 FP16/BF16 的精度推理,并且可以利用业界的量化方法,使用硬件吞吐更高的低精度推理进一步推升推理性能。
  2. TensorRT-llm 为什么快?
    1. 模型预编译,并优化内核
    2. 模型进行量化
    3. In-flight批处理
    4. page attention 以及高效缓存K、V.
  3. 流程
    1. huggingface 模型—>tensorRT-llm模型(模型转换)---->转为trt引擎----->trt引擎推理。
  4. TensorRT-LLM 环境配置
    1. 下载tensorRT-LLM 项目,注意,下载0.8.0, 其中0.9.0问题较多

    git clone -b v0.8.0 https://github.com/NVIDIA/TensorRT-LLM.git
    cd TensorRT-LLM

    1. 创建容器(cuda 最好是大于12.2), 也可以是其他容器,该容器包含tritonserver服务。

      docker pull nvcr.io/nvidia/tritonserver:24.02-trtllm-python-py3

docker run --gpus all
–name trt_llm
-d
–ipc=host
–ulimit memlock=-1
–restart=always
–ulimit stack=67108864
-p 8000:8000
-p 7860:7860
-v ${PWD}/examples:/app/tensorrt_llm/examples
nvcr.io/nvidia/tritonserver:24.02-trtllm-python-py3 sleep 8640000

  1. 安装tensorRT-LLM
    >>pip install tensorrt_llm==0.8.0 --extra-index-url https://pypi.nvidia.com --extra-index-url https://download.pytorch.org/whl/cu121
  2. 检查安装
    >> python3 -c “import tensorrt_llm” 生成版本号。
  3. 安装大模型本身需要的环境。
    参考:https://github.com/Tlntin/Qwen-TensorRT-LLM

4.大模型 转换、编译与推理
>>cd TensorRT-LLM/examples/bloom
文件1. convert_checkpoint.py: 将hf 模型转为tensorRT-LLM格式模型。
文件2. …/run.py 推理文件, 根据需求进行相应的修改
文件3. …/summarize.py 在cnn_dailymail 数据集中的测试文本。生成rouge 结果
文件4 benchmark.py 测试吞吐量

方式一、含有build.py 文件
1. 编译 参考:https://github.com/Tlntin/Qwen-TensorRT-LLM
>>python3 build.py --添加参数
2. 使用
>> python3 run.py
方式二、不含有build.py 文件
1. 模型量化 参考:https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/qwen
>># Build the Qwen-7B-Chat model using a single GPU and FP16.
python convert_checkpoint.py --model_dir ./tmp/Qwen/7B/
–output_dir ./tllm_checkpoint_1gpu_fp16
–dtype float16
2. 创建引擎

trtllm-build --checkpoint_dir ./tllm_checkpoint_1gpu_fp16
–output_dir ./tmp/qwen/7B/trt_engines/fp16/1-gpu
–gemm_plugin float16

  1. 使用

python3 …/run.py --input_text “你好,请问你叫什么?”
–max_output_len=50
–tokenizer_dir ./tmp/Qwen/7B/
–engine_dir=./tmp/Qwen/7B/trt_engines/fp16/1-gpu/
方式三、自己修改,写build.py 文件

          1. 官网下载benchmarks/python下的build.py 文件, 进行修改,同时需要进一步修改模型

后续…
生成文件:
文件1:config.json 配置文件
文件2:rank0.engine 驱动引擎

5.如何选择量化类型?
训练后 量化类型:1. fp16、int8(weight only)、int4(weight only)
2. smooth quant量化:SmoothQuant 通过平滑激活层和权重后,再使用per-tensor或per-token量化,实现W8A8。根据量化方式不同,作者提出三种策略 O1、O2、O3,计算延迟依次降低。
与其他量化方法相比,该方法可以保持较高的精度,同时,具有更低的延迟。
3. int8-kv-cache量化: KV Cache 量化是指将逐 Token(Decoding)生成过程中的上下文 K 和 V 中间结果进行 INT8 量化(计算时再反量化),以降低生成过程中的显存占用。
4. int4-gptq 量化:所有权重压缩到4位量化中,通过最小化与该权重的均方误差来实现。在推理过程中,它将动态地将权重解量化为float16,以提高性能,同时保持内存较低。
5. int4-awq 量化:激活感知的权重量化。 在量化过程中,有一小部分权重将被跳过,这有助于减少量化损失。
模型越大,对仅权重和KV缓存量化的容忍度越高,而对激活量化的容忍度较低。
对于大多数NLP任务,将大多数LLM家族量化为W4、W4A8、KV4和W8KV4,性能损失可以忽略不计(<2%)。在一定的内存预算下,使用量化到W3的较大模型可以获得更优性能。
在四种突出能力(即上下文学习、指令遵循、多步推理和自校准)中,自校准和多步推理能力对量化更敏感。对于小于13B的LLMs,推荐使用W8、W8A8和KV8量化。
对于伦理任务,小型模型对量化的敏感性更高。仅权重量化会增强模型对敏感信息的判断,而KV缓存量化则有相反的效果。
LLMs在处理长文本(>4k)时,对仅权重和KV缓存量化的敏感性高于短文本(<4k),尤其是对KV缓存量化。在大多数情况下,W4、W4A8和KV8可以在长上下文任务中保持性能。
最先进的量化方法,如SmoothQuant和AWQ,在量化造成的性能损失适中时,可以有效提升性能。然而,当使用极低位宽时,AWQ和SmoothQuant无法恢复完全损坏的性能。
参考:https://zhuanlan.zhihu.com/p/695144724

  1. lora 大模型如何合并?
    https://blog.csdn.net/BIT_666/article/details/132065177

相关文章:

TensorRT-llm入门

一、目录 作用TensorRT-llm 为什么快&#xff1f;流程TensorRT-LLM 环境配置大模型 转换、编译与推理如何选择量化类型&#xff1f;lora 大模型如何合并&#xff1f;lora 大模型如何编译&#xff0c;使用&#xff1f;推理加速模型 tensorrRT-LLM、Vllm、fasterTransformer、Be…...

TinyXML-2介绍

1.简介 TinyXML-2 是一个简单、小巧的 C XML 解析库&#xff0c;它是 TinyXML 的一个改进版本&#xff0c;专注于易用性和性能。TinyXML-2 用于读取、修改和创建 XML 文档。它不依赖于外部库&#xff0c;并且可以很容易地集成到项目中。 tinyXML-2 的主要特点包括&#xff1a…...

JAVA课程设计

一&#xff1a;Java连接mysql数据库 1.1点击进入mysql jar包下载官网 MySQL :: MySQL Community Downloads 将下载好的压缩包进行解压 解压之后下图就是连接数据库所用到的jar包&#xff1a; 将jar包复制到IDEA所用的项目下&#xff0c;放置jar包的目录为lib&#xff0c;需要…...

基于SpringBoot+Vue的旅游网站系统

初衷 在后台收到很多私信是咨询毕业设计怎么做的&#xff1f;有没有好的毕业设计参考? 能感觉到现在的毕业生和当时的我有着同样的问题&#xff0c;但是当时的我没有被骗&#xff0c; 因为现在很多人是被骗的&#xff0c;还没有出学校还是社会经验少&#xff0c;容易相信别人…...

http代理ip按流量划算还是个数划算?

随着科技的进步和互联网的发展&#xff0c;越来越多的企业在业务上都需要用到代理&#xff0c;那么http代理ip按流量划算还是个数划算&#xff1f;小编接下来就跟大家介绍一下&#xff1a; 首先我们得先了解http代理ip的按流量模式和个数模式分别是什么&#xff1a; 一、按流…...

Banana Pi BPI-F3, 进迭时空K1芯片设计,定位工业级应用,网络通信及工业自动化

香蕉派BPI-F3是一款工业级 8核RISC-V开源硬件开发板&#xff0c;它采用进迭时空&#xff08;SpacemiT&#xff09; K1 8核RISC-V芯片设计&#xff0c;CPU集成2.0 TOPs AI计算能力。4G DDR和16G eMMC。2个GbE以太网接口&#xff0c;4个USB 3.0和PCIe M.2接口&#xff0c;支持HDM…...

安科瑞工业IT产品及解决方案—电源不接地,设备外壳接地【监测系统对地绝缘电阻】

低压配电系统分类及接地保护方案 国际电工委员会&#xff08;iec&#xff09;对各接地方式供电系统的规定规定&#xff1a;(低压&#xff1a;交流1000V以下&#xff09; 低压配电接地、接零系统分为IT、TT、TN三种基本形式。TN分为TN-C&#xff0c;TN-S&#xff0c;TN-C-S三种…...

栈:概念与实现

1.概念 压栈&#xff1a;栈的插入操作叫做进栈/压栈/入栈&#xff0c;入数据在栈顶。出栈&#xff1a;栈的删除操作叫做出栈&#xff0c;出数据也在栈顶。栈的元素遵循后进先出LIFO(Last In First Out)的原则。后面进来的数据先出去 2.栈的实现 三种实现方法&#xff0c;数组…...

【Linux】查找服务器中某个文件的完整路径

方法一&#xff1a; 使用 -wholename 来搜索路径&#xff1a; find / -wholename */esm/data.py这个命令会搜索与 */esm/data.py 完全匹配的路径&#xff0c;其中 * 代表任意数量的任意字符。这应该会找到位于任何目录下的 esm/data.py 文件。 可以限定在某个目录下查找&…...

windows server 2019 安装 docker环境

一、根据官方说明进行安装 , 看起来过程相当简单, 但问题还是有的 准备 Windows 操作系统容器 | Microsoft Learn // 一个 powershell 脚本&#xff0c;该脚本配置环境以启用与容器相关的 OS 功能并安装 Docker 运行时。 Invoke-WebRequest -UseBasicParsing "https://r…...

【Linux】探索 Linux du 命令:管理磁盘空间的利器

给我一个拥抱 给我肩膀靠靠 你真的不需要 对我那么好 思念就像毒药 让人受不了的煎熬 我会迷恋上瘾赖在你怀抱 &#x1f3b5; 陶钰玉《深夜地下铁》 在 Linux 系统管理中&#xff0c;磁盘空间管理是一项基础而重要的任务。du&#xff08;disk usage&#…...

Service 和 Ingress

文章目录 Service 和 IngressServiceEndpointservice 的定义代理集群外部服务反向代理外部域名Service 常用类型 IngressIngress-nginx安装使用 Service 和 Ingress service 和 ingress 是kubernetes 中用来转发网络请求的两个服务&#xff0c;两个服务用处不同&#xff0c;se…...

C++(类和对象—封装)

C面向对象的三大特性 封装 继承 多态 C认为万事万物皆为对象&#xff0c;对象上有其属性和行为 什么是封装&#xff1f; 封装是C面向对象三大特性之一 封装的意义: 将属性和行为作为一个整体&#xff0c;表现生活中的事物 将属性和行为加以权限控制封装意义一: …...

如何训练一个大模型:LoRA篇

目录 写在前面 一、LoRA算法原理 1.设计思想 2.具体实现 二、peft库 三、完整的训练代码 四、总结 写在前面 现在有很多开源的大模型&#xff0c;他们一般都是通用的&#xff0c;这就意味着这些开源大模型在特定任务上可能力不从心。为了适应我们的下游任务&#xff0c;…...

Spring Cloud学习笔记(Nacos):基础和项目启动

这是本人学习的总结&#xff0c;主要学习资料如下 - 马士兵教育 1、基础和版本选择2、启动项目2.1、源码启动项目2.2、命令行启动 1、基础和版本选择 Nacos是用于服务发现和注册&#xff0c;是Spring Cloud Alibaba的核心模块。 根据文档&#xff0c;Spring Cloud Alibaba的版…...

音频提取特征

目录 音频提取特征 音频切割 依赖项&#xff1a; pip install librosa pip install transformers 音频提取特征 import librosa import numpy as np import torch from transformers import Wav2Vec2Processorprocessor Wav2Vec2Processor.from_pretrained("faceboo…...

AJAX前端与后端交互技术知识点以及案例

Promise promise对象用于表示一个异步操作的最终完成&#xff08;或失败&#xff09;及其结果值 好处&#xff1a; 逻辑更清晰了解axios函数内部运作机制成功和失败状态&#xff0c;可以关联对应处理程序能解决回调函数地狱问题 /*** 目标&#xff1a;使用Promise管理异步任…...

[AutoSar]BSW_Diagnostic_003 ReadDataByIdentifier(0x22)介绍

目录 关键词平台说明背景一、请求格式二、常用DID三、响应格式四、NRC五、case 关键词 嵌入式、C语言、autosar、OS、BSW、UDS、diagnostic 平台说明 项目ValueOSautosar OSautosar厂商vector &#xff0c; EB芯片厂商TI 英飞凌编程语言C&#xff0c;C编译器HighTec (GCC)au…...

买卖股票的最佳时机 II(LeetCode 122)

❤️❤️❤️ 欢迎来到我的博客。希望您能在这里找到既有价值又有趣的内容&#xff0c;和我一起探索、学习和成长。欢迎评论区畅所欲言、享受知识的乐趣&#xff01; 推荐&#xff1a;数据分析螺丝钉的首页 格物致知 终身学习 期待您的关注 导航&#xff1a; LeetCode解锁100…...

Spring Boot:让微服务开发像搭积木一样简单!

带你一探 Spring Boot 的自动配置和 Starter POMs 的神奇之处&#xff0c;展示如何通过几个简单的步骤就能让你的微服务应用在云端翱翔&#xff01; 文章目录 1. 引言1.1 简述Spring框架的起源与重要性1.2 阐述文章目的&#xff1a;深入解析Spring核心功能与应用实践2. 背景介绍…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

redis和redission的区别

Redis 和 Redisson 是两个密切相关但又本质不同的技术&#xff0c;它们扮演着完全不同的角色&#xff1a; Redis: 内存数据库/数据结构存储 本质&#xff1a; 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能&#xff1a; 提供丰…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落&#xff0c;一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延&#xff0c;滚滚浓烟弥漫开来&#xff0c;周围群众的生命财产安全受到严重威胁。就在这千钧一发之际&#xff0c;消防救援队伍迅速行动&#xff0c;而豪越科技消防一体化安全管控平台构建的消防“…...

软件工程 期末复习

瀑布模型&#xff1a;计划 螺旋模型&#xff1a;风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合&#xff1a;模块内部功能紧密 模块之间依赖程度小 高内聚&#xff1a;指的是一个模块内部的功能应该紧密相关。换句话说&#xff0c;一个模块应当只实现单一的功能…...