当前位置: 首页 > news >正文

自定义类型——结构体、枚举和联合

自定义类型——结构体、枚举和联合

  • 结构体
    • 结构体的声明
    • 匿名结构体
    • 结构体的自引用
    • 结构体的初始化
    • 结构体的内存对齐
    • 修改默认对齐数
    • 结构体传参
  • 位段
  • 枚举
  • 联合

结构体

  • 结构是一些值的集合,这些值被称为成员变量,结构的每个成员可以是不同类型的变量。

数组是一些值的结合,类型是相同的

结构体的声明

	struct tag{member_list;}variable_list;//全局变量
  • 这里通过前面的列表创建的变量是全局变量
	typedef struct tag{member_list;}tag;//相当于struct tag
  • typedef可以将复杂的类型简化

匿名结构体

	struct{member_list;}variavle_list;//必须存在
  • 匿名结构体类型,如果没有对结构体类型重命名,只能使用一次

结构体的自引用

//结构体的自引用
struct stu
{int age;struct stu* next;
};
typedef struct stu
{int age;struct stu* next;
}stu;

结构体的初始化

//结构体的初始化#include<stdio.h>
struct student
{char name[10];unsigned int age;char sex[5];
};int main(void)
{//初始化struct student n1 = { "张三",21,"男"};//打印printf("%s %u %s", n1.name, n1.age, n1.sex);return 0;
}

运行截图
运行截图

结构体的内存对齐

//结构体的内存对齐
#include<stdio.h>
struct eg1
{int i;char j;char k;
};struct eg2
{char x;int y;char z;
};int main(void)
{//打印eg1printf("%zd\n", sizeof(struct eg1));//8//打印eg2printf("%zd\n", sizeof(struct eg2));//12return 0;
}
  • 结构体对齐规则

1.结构体的第一个成员,对齐到结构体在内存中存放位置的0偏移处
2.从第二个成员开始,每个成员都要对齐到(一个对齐数)的整数倍处

对齐数:
结构体成员自身大小和默认对齐数的较小值

在VS中:默认对齐数为8
Linux gcc:没有对齐数,对齐数就是成员自身大小

3.结构总大小为最大对齐数的较小值
4.如果结构体中嵌套了结构体成员,要将嵌套的成员对齐到自己的成员中最大对齐数的整数倍处
5.结构体的总大小必须是最大对齐数的整数倍,这里的最大对齐数是:包含嵌套结构体成员中的对齐数的所以对齐数中的最大值

  • 结构体内存对齐的原因

1.平台原因:
不是所有的硬件平台都能访问任意地址上的任意数据的,某些硬件平台只能在地址处取某些特定类型的数据,否则会抛出硬件异常

2.性能原因:
数据结构(尤其是栈)应该尽可能的在自然边界上对齐,原因在于,为了访问来对齐的内存,处理器需要作俩次内存访问,而对齐的内存仅需要一次访问

总结:
结构体的内存对齐是拿空间来换取时间的做法(满足对齐,节省空间:让占用空间小的成员尽量集中在一起)

修改默认对齐数

#pragma pack()可以设置默认对齐数

//修改默认对齐数
#include<stdio.h>
//修改默认对齐数为2
#pragma pack(2)struct eg1
{char s1;int s2;
};//恢复默认对齐数
#pragma pack()struct eg2
{char s1;int s2;
};int main(void)
{//打印eg1printf("%zd\n",sizeof(struct eg1));//6//打印eg2printf("%zd\n", sizeof(struct eg2));//8return 0;
}

总结:
结构在对齐方式不合适的时候,可以自己更改默认对齐数

结构体传参

//结构体传参
#include<stdio.h>struct eg
{int arr[100];char ch[20];
}s1 = { {1,2,3,4,5} ,"abcdef"};
//结构体传参
void print1(struct eg s1)
{printf("%s\n",s1.ch);
}
//结构体地址传参
void print2(struct eg* ps)
{printf("%s\n",ps->ch);
}
int main(void)
{//结构体传参print1(s1);//结构体地址传参print2(&s1);return 0;
}

运行截图:
截图

  • 总结:结构体传参的时候,要传结构体的地址
  • 原因在于,函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销

  • 如果传递一个结构体对象的时候,结构体过大,参数压栈的系统开销比较大,所以导致性能下降

位段

  • 位段的声明和结构体的声明基本相似,但也存在俩点不同:

1.位段的成员必须为int,unsigned int或者 signed int
2.位段的成员名后面有一个冒号和一个数字

//位段
#include<stdio.h>
struct eg
{int _a : 2;int _b : 5;int _c : 10;int _d : 20;
};int main(void)
{printf("%zd",sizeof(struct eg));return 0;
}

运行截图:
在这里插入图片描述

  • 位段:二进制位,可以节省空间

位段的内存分配
1.位段的成员可以是int,unsigned int,signed int或者是char (属于整数家族)类型
2.位段的空间上是按照需要以4个字节(int)或者1个字节(char)的方式来开辟的
3.位段涉及很多不确定因素,位段时不跨平台的,注重可移植的程序应该避免使用位段

位段的跨平台问题
1.int位段被当成有符号数还是无符号数是不确定的
2.位段中最大位的数目不能确定(16位机器最大16,32位机器最大32,写成27时可能在16位机器上出现问题)
3.位段中的成员在内存中从左到右分配,而且从右向左标准尚未定义
4.当一个结构包含俩个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的

总结:跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在

枚举

  • 枚举:即一 一列举
//枚举
enum Day
{Mon,Tues,Wed,Thur,Fri,Sat,Sun
};enum Color
{Green,Blue,Red,Orange
};

enum Day和enum color都是枚举类型,{ }中的内容是枚举类型的可能取值,也叫枚举常量。这些枚举常量都是存在取值的,默认是从0开始,一次低递加1

  • 也可以在定义的时候赋值
enum Day
{Mon = 1,Tues = 2,Wed = 3,Thur = 4,Fri = 5,Sat = 6,Sun = 7
};

枚举的优点:
1.增加代码的可读性和可维护性
2.和#define定义的标识符比较,枚举由类型检查,更加严谨
3.防止了命名污染(封装)
4.便于调试
5.使用方便,一次可以定义多个变量

联合

  • 联合同样也是一种自定义类型,这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共同体)
//联合
union eg
{char i;int j;
};
  • 特点:

联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联合至少得有能力保存最大的那个成员)

  • 联合大小的计算:

1.联合的大小至少是最大成员的大小
2.当最大成员大小不是最大对齐数的整数的时候,就有对齐到最大对齐数的整数倍

//联合
#include<stdio.h>
union eg
{char i;int j;
};
int main(void)
{union eg s;printf("%p\n", &s.i);printf("%p\n", &s.j);return 0;
}

在这里插入图片描述

相关文章:

自定义类型——结构体、枚举和联合

自定义类型——结构体、枚举和联合 结构体结构体的声明匿名结构体结构体的自引用结构体的初始化结构体的内存对齐修改默认对齐数结构体传参 位段枚举联合 结构体 结构是一些值的集合&#xff0c;这些值被称为成员变量&#xff0c;结构的每个成员可以是不同类型的变量。 数组是…...

Windows11系统安装Mysql8之后,启动服务net start mysql报错“服务没有响应控制功能”的解决办法

问题 系统环境&#xff1a;Windows11 数据库版本&#xff1a;Mysql8 双击安装&#xff0c;一路下一步&#xff0c;完成&#xff0c;很顺利&#xff0c;但是开启服务后 net start mysql 报错&#xff1a; 服务没有响应控制功能。 请键入 NET HELPMSG 2186 以获得更多的帮助 不…...

WIFI模块的AT指令联网数据交互--第十天

1.1.蓝牙&#xff0c;ESP-01s&#xff0c;Zigbee, NB-Iot等通信模块都是基于AT指令的设计 初始配置和验证 ESP-01s出厂波特率正常是115200, 注意&#xff1a;AT指令&#xff0c;控制类都要加回车&#xff0c;数据传输时不加回车 1.2.上电后&#xff0c;通过串口输出一串系统…...

设计模式Java实现-迭代器模式

✨这里是第七人格的博客✨小七&#xff0c;欢迎您的到来~✨ &#x1f345;系列专栏&#xff1a;设计模式&#x1f345; ✈️本篇内容: 迭代器模式✈️ &#x1f371; 本篇收录完整代码地址&#xff1a;https://gitee.com/diqirenge/design-pattern &#x1f371; 楔子 很久…...

单页源码加密屋zip文件加密API源码

简介&#xff1a; 单页源码加密屋zip文件加密API源码 api源码里面的参数已改好&#xff0c;往服务器或主机一丢就行&#xff0c;出现不能加密了就是加密次数达到上限了&#xff0c;告诉我在到后台修改加密次数 点击下载...

47.全排列

1.题目 47. 全排列 II - 力扣&#xff08;LeetCode&#xff09;https://leetcode.cn/problems/permutations-ii/description/ 2.思路 注意剪枝的条件 3.代码 class Solution {vector<int> path;vector<vector<int>> ret;bool check[9]; public:vector<…...

呼叫中心系统选pscc好还是okcc好

选择PSCC&#xff08;商业软件呼叫中心&#xff09;还是OKCC&#xff08;开源呼叫中心&#xff09;&#xff0c;应基于以下几个关键因素来决定&#xff1a; 技术能力&#xff1a;如果企业拥有或愿意投入资源培养内部技术团队&#xff0c;开源解决方案可能更合适&#xff0c;因为…...

【SRC实战】前端脱敏信息泄露

挖个洞先 https://mp.weixin.qq.com/s/xnCQQCAneT21vYH8Q3OCpw “ 以下漏洞均为实验靶场&#xff0c;如有雷同&#xff0c;纯属巧合 ” 01 — 漏洞证明 一、前端脱敏&#xff0c;请求包泄露明文 “ 前端脱敏处理&#xff0c;请求包是否存在泄露&#xff1f; ” 1、获取验…...

区块链 | NFT 水印:Review on Watermarking Techniques(三)

&#x1f34d;原文&#xff1a;Review on Watermarking Techniques Aiming Authentication of Digital Image Artistic Works Minted as NFTs into Blockchains 一个 NFT 的水印认证协议 可以引入第三方实体来实现对交易的认证&#xff0c;即通过使用 R S A \mathsf{RSA} RSA…...

初识C语言——第十九天

for循环 1.简单概述 2.执行流程 3.建议事项&#xff1a;...

软件需求工程习题

1.&#xff08;面谈&#xff09;是需求获取活动中发生的需求工程师和用户间面对面的会见。 2.使用原型法进行需求获取&#xff0c;&#xff08;演化式&#xff09;原型必须具有健壮性&#xff0c;代码质量要从一开始就能达到最终系统的要求 3.利用面谈进行需求获取时&#xf…...

Win10弹出这个:https://logincdn.msauth.ne

问题描述&#xff1a; Win10脚本错误 Windows10家庭版操作系统开机后弹出这个 https://logincdn.msauth.net/shared/1.0/content/js/ConvergedLogin_PCore_vi321_9jVworKN8EONYo0A2.js 解决方法&#xff1a; 重启计算机后手动关闭第三方安全优化软件&#xff0c;然后在任务管理…...

Vue2 动态路由

VUE CLI 项目 router.js import Vue from "vue"; import Router from "vue-router"; import base from "/view/404/404.vue";const originalPush Router.prototype.push Router.prototype.push function push (location) {return originalPu…...

LeetCode746:使用最小花费爬楼梯

题目描述 给你一个整数数组 cost &#xff0c;其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用&#xff0c;即可选择向上爬一个或者两个台阶。 你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。 请你计算并返回达到楼梯顶部的最低花费。 代码 …...

DockerFile介绍与使用

一、DockerFile介绍 大家好&#xff0c;今天给大家分享一下关于 DockerFile 的介绍与使用&#xff0c;DockerFile 是一个用于定义如何构建 Docker 镜像的文本文件&#xff0c;具体来说&#xff0c;具有以下重要作用&#xff1a; 标准化构建&#xff1a;提供了一种统一、可重复…...

Java基础知识(六) 字符串

六 字符串 6.1 String字符串 1、String类对象创建 定义String类对象格式&#xff1a;** 1&#xff09;String 字符串变量名“字符串常量”&#xff1b; 2&#xff09;String 字符串变量名new String(字符串常量); 3&#xff09;String 字符串变量名; 字符串变量名“字符串常…...

为什么跨境电商大佬都在自养号测评?看完你就懂了!

在跨境电商的激烈竞争中&#xff0c;各大平台如亚马逊、拼多多Temu、shopee、Lazada、wish、速卖通、煤炉、敦煌、独立站、雅虎、eBay、TikTok、Newegg、Allegro、乐天、美客多、阿里国际、沃尔玛、Nike、OZON、Target以及Joom等&#xff0c;纷纷成为商家们竞相角逐市场份额的焦…...

AtCoder Beginner Contest 353

A 题意&#xff1a;检查是否有比第一个数大的数 #include<bits/stdc.h>using namespace std;int main() {int n;cin>>n;int a;cin>>a;int f0;for(int i2;i<n;i){int k;cin>>k;if(k>a){cout<<i<<endl;f1;break;}}if(f0){cout<&l…...

深度解读《深度探索C++对象模型》之虚继承的实现分析和效率评测(一)

目录 前言 具有虚基类的对象的构造过程 通过子类的对象存取虚基类成员的实现分析 接下来我将持续更新“深度解读《深度探索C对象模型》”系列&#xff0c;敬请期待&#xff0c;欢迎左下角点击关注&#xff01;也可以关注公众号&#xff1a;iShare爱分享&#xff0c;或文章末…...

计算机Java项目|Springboot房产销售系统

作者主页&#xff1a;编程指南针 作者简介&#xff1a;Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、腾讯课堂常驻讲师 主要内容&#xff1a;Java项目、Python项目、前端项目、人工智能与大数据、简…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

JDK 17 序列化是怎么回事

如何序列化&#xff1f;其实很简单&#xff0c;就是根据每个类型&#xff0c;用工厂类调用。逐个完成。 没什么漂亮的代码&#xff0c;只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...

怎么开发一个网络协议模块(C语言框架)之(六) ——通用对象池总结(核心)

+---------------------------+ | operEntryTbl[] | ← 操作对象池 (对象数组) +---------------------------+ | 0 | 1 | 2 | ... | N-1 | +---------------------------+↓ 初始化时全部加入 +------------------------+ +-------------------------+ | …...

React核心概念:State是什么?如何用useState管理组件自己的数据?

系列回顾&#xff1a; 在上一篇《React入门第一步》中&#xff0c;我们已经成功创建并运行了第一个React项目。我们学会了用Vite初始化项目&#xff0c;并修改了App.jsx组件&#xff0c;让页面显示出我们想要的文字。但是&#xff0c;那个页面是“死”的&#xff0c;它只是静态…...