当前位置: 首页 > news >正文

百面算法工程师目录 | 深度学习目标检测、语义分割、分类上百种面试问答技巧

 本文给大家带来的百面算法工程师是深度学习面试目录大纲,文章内总结了常见的提问问题,旨在为广大学子模拟出更贴合实际的面试问答场景。在这篇文章中,可以点击题目直达问题答案处,方便查找问题寻找答案。节约大家的时间。通过对这些问题的理解和回答,求职者可以展现出自己的深度学习目标检测领域的专业知识、解决问题的能力以及对实际应用场景的理解。同时,这也是为了帮助求职者更好地应对深度学习目标检测岗位的面试挑战,提升面试的成功率和竞争力

总目录 

百面算法工程师 | 损失函数篇

百面算法工程师 | python解释器相关

百面算法工程师 | 零碎知识点 【待更新】

百面算法工程师 | 经典分类网络总结 

百面算法工程师 | 目标检测总结

百面算法工程师 | YOLOv5面试考点原理全解析

百面算法工程师 | YOLOv8面试考点原理全解析【待更新】

百面算法工程师 | 深度学习目标检测岗位面试总结

 百面算法工程师 | 分类和聚类

百面算法工程师 | Tranformer

百面算法工程师 | 卷积基础知识Conv

百面算法工程师 | 分割网路总结

 百面算法工程师 | 激活函数

百面算法工程师 | 优化函数

百面算法工程师 | 深度学习基础理论

百面算法工程师 | 传统图像算法

百面算法工程师 | 池化层

百面算法工程师 | 支持向量机

百面算法工程师 | 模型评价指标

百面算法工程师 | 正则优化函数——BN、LN、Dropout

子目录

损失相关

1.1 Focal Loss[主要针对one stage]
1.2 DFL(YOLOv8损失函数)
1.3 IoU
1.4 GIoU
1.5 DIoU
1.6 CIoU
1.7 SIoU

python解释器相关

2.1 Python的装饰器的作用是什么,为什么要这么做
2.2 什么是解释性语言,什么是编译性语言
2.3 python程序的执行过程
2.4 python的作用域
2.5 python的数据结构
2.6 python多线程
2.7 python多进程
2.8 Python互斥锁与死锁
2.9 Python的深拷贝与浅拷贝
2.10 hasattr() getattr() setattr() 函数使用详解
2.11 init.py 文件的作用以及意义
2.12 点积和矩阵相乘的区别

零碎知识点【待更新】

3.1 BN
3.2 双线性插值
3.3 为什么传统CNN的输入图片是固定大小

经典分类网络与发展

4.1 AlexNet
4.2 VGGNet
4.3 GoogLeNetInception
4.4 ResNet
4.5 DenseNet
4.6 MobileNet
4.7 ShuffleNet
4.8 SENet(ImageNet最后一届竞赛的冠军,提出了SE结构)
4.9 EfficientNet

object detect

5.1 Single Shot MultiBox Detector(SSD)
5.2 YOLO
5.2.1 v1
5.2.2 v2
5.2.3 v3
5.2.4 v4
5.2.5 v5
5.2.6 v6
5.2.7 v7
5.2.8 v8
5.2.9 v9
5.3 NMS
5.4 深度学习目标检测岗位面试总结
5.5 Anchor
5.5.1 Anchor based
5.5.2 Anchor free
5.6 类别不均衡

分类和聚类

6.1 为什么正确率有时不能有效评估分类算法
6.2 什么样的分类器最好
6.3 什么是聚类,你知道哪些聚类算法
6.4 K-Means聚类算法如何调优
6.5 K-Means聚类算法如何选择初始点
6.6 K-Means聚类聚的是特征还是样本
6.7 K-Means++

Transformer

7.1 Encoder
7.2 Decoder
7.3 训练与测试阶段Decoder的输入、输出
7.4 Transformer Encoder和Decoder的区别
7.5 Transformer中的Embedding
7.6 Positional Embedding
7.7 Transformer中的Attention以及Q、K、V
7.8 Transformer中的Multi head Attention
7.9 Mask Multi head Attention

卷积Conv

8.1 图像卷积过程
8.2 卷积层基本参数
8.3 卷积后图像的长和宽大小的计算方式
8.4 卷积神经网络中的权重共享
8.5 上采样中的反卷积
8.6 空洞卷积
8.7 深度可分离卷积
8.8 为什么可分离卷积中Depthwise卷积后还要进行pointwise卷积
8.9 分组卷积 Group Conv
8.10 1x1卷积作用
8.11 卷积的底层实现/加速技巧
8.12 卷积神经网络的特点
8.13 卷积的memory,params,GFLOPs计算方法

分割网络

9.1 语义分割
9.2 实例分割
9.3 为什么传统CNN的输入图片是固定大小
9.4 FCN
9.5 SegNet
9.6 使用池化层进行上采样的优势
9.7 UNet
9.8 PSPNet
9.9 DeepLab v1 v2 v3
9.9.1 v1
9.9.2 v2
9.9.3 DeepLab v3
9.10 Mask R-CNN
9.11 RoIAlign

激活函数 Activate Function

10.1激活函数作用
10.2 为什么激活函数都是非线性的
10.3 常见激活函数的优缺点及其取值范围
10.4 激活函数问题的汇总
10.4.1 Sigmoid的缺点,以及如何解决
10.4.2 ReLU在零点可导吗,如何进行反向传播
10.4.3 Softmax溢出怎么处理
10.4.4 怎么理解ReLU负半区间也是非线性激活函数
10.4.5 ReLU函数的特点
10.5 如何选择激活函数
10.6 激活函数有哪些性质

优化函数

11.1 优化函数的作用
11.2 梯度下降法的作用
11.3 优化函数及其优缺点
11.4 SGD和Adam的对比
11.5 Batch的影响

基础理论

12.1 超参数调优
12.2 为什么需要Batch Size
12.3 归一化的目的
12.4 局部最优与全局最优
12.5 监督学习与非监督学习的区别
12.6 监督学习有哪些步骤
12.7 为什么神经网络越来越深,变深的意义在哪
12.8 为什么深度神经网络较浅层网络难以训练
12.9 超参数搜索过程是怎样的
12.10 模型Fine tuning
12.10.1 Fine tuning时是否会更新网络参数,为什么
12.10.2 Fine tuning模型有哪些类型
12.10.3 梯度消失、爆炸的解决方案
12.11 深度学习为什么不用二阶优化
12.12 什么是TOP5错误率
12.13 开发平台的选择

传统图像算法

13.1 HSV色彩空间
13.2 swish激活函数
13.3 OpenCV——几何变换
13.3.1 缩放
13.3.2 翻转
13.3.3 仿射
13.3.4 透视
13.4 图像平滑处理
13.4.1 均值滤波
13.4.2 方框滤波
13.4.3 高斯滤波
13.4.4 中值滤波
13.4.5 双边滤波
13.4.6 横向对比

池化层

14.1 什么是池化
14.2 池化层的作用
14.3 平均池化
14.4 最大池化
14.5 空间金字塔池化
14.6 ROI Pooling
14.7 最大池化与平均池化是如何进行反向传播的
14.8 卷积层与池化层的区别

支持向量机——SVM

15.1 SVM
15.2 SVM原理
15.3 SVM解决问题的类型
15.4 核函数的作用以及特点
15.5 核函数的表达式
15.6 SVM为什么引入对偶问题
15.7 SVM使用SGD及步骤
15.8 为什么SVM对缺失数据敏感
15.9 SVM怎么防止过拟合

模型评价指标

16.1 回归模型评估常用的方法
16.2 混淆矩阵
16.3 查准率,查全率,F1-score,准确率
16.4 PR曲线图16.5 AP与mAP

 正则优化函数——BN、LN、Dropout

17.1 什么是过拟合和欠拟合

17.2 解决过拟合和欠拟合的方法有哪些

17.3 什么是正则化?

17.4 L1与L2为什么对于特征选择有着不同方式

17.5 正则化有什么作用

17.6 介绍一下BN

17.7 BN训练与测试有什么不同

17.8 BN/LN/IN/GN区别

相关文章:

百面算法工程师目录 | 深度学习目标检测、语义分割、分类上百种面试问答技巧

本文给大家带来的百面算法工程师是深度学习面试目录大纲,文章内总结了常见的提问问题,旨在为广大学子模拟出更贴合实际的面试问答场景。在这篇文章中,可以点击题目直达问题答案处,方便查找问题寻找答案。节约大家的时间。通过对这…...

Java中Maven的依赖管理

依赖介绍 是指当前项目运行所需要的jar包&#xff0c;一个项目中可以引入多个依赖 配置 在pom.xml中编写<dependencies>标签 在<dependencies>中使用<dependency>引入标签 定义坐标的groupId、rtifactId、version 点击刷新按钮、引入新坐标 例如引入下…...

Github新手入门使用方法

**存在问题&#xff1a;**新手如何快速入门github&#xff0c;能够下载开源文件&#xff0c;并且修改后更新远程github仓库&#xff1b; 解决方案&#xff1a; 参考&#xff1a; http://www.360doc.com/content/24/0301/12/60419_1115656653.shtml https://blog.csdn.net/gongd…...

期权隐含波动率到底是什么意思?

今天期权懂带你了解期权隐含波动率到底是什么意思&#xff1f;期权隐含波动率解析。通俗的说&#xff0c;期权隐含波动率是在期权市场中买家和卖家对于&#xff0c;某一期权合约价格变动幅度大小的判断。 期权隐含波动率到底是什么意思&#xff1f; 隐含波动率是根据期权市场价…...

28、Flink 为管理状态自定义序列化

为管理状态自定义序列化 a&#xff09;概述 对状态使用自定义序列化&#xff0c;包含如何提供自定义状态序列化程序、实现允许状态模式演变的序列化程序。 b&#xff09;使用自定义状态序列化程序 注册托管 operator 或 keyed 状态时&#xff0c;需要 StateDescriptor 来指…...

【强训笔记】day17

NO.1 思路&#xff1a;用一个字符串实现&#xff0c;stoi函数可以转化为数字并且去除前导0。 代码实现&#xff1a; #include <iostream> #include<string> using namespace std;string s;int main() {cin>>s;for(int i0;i<s.size();i){if(s[i]%20) s[…...

平滑 3d 坐标

3d平滑 import torch import torch.nn.functional as F import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3Dclass SmoothOperator:def smooth(self, vertices):# 使用一维平均池化进行平滑vertices_smooth F.avg_pool1d(vertices.p…...

Go解析的数据类型可能含有不同数据结构的处理方式

最近做一个需求&#xff0c;各种业务消息都会往我的消息队列中写各种类型的数据&#xff0c;服务端需要接受各种不同的参数然后转换为本地数据结构&#xff0c;Go语言不确定上游传过来的数值是什么类型&#xff0c;然后又下面四种解决方案。 1. 类型断言和类型切换 func (Mis…...

Java网络编程基础

Java网络编程基础主要涉及进程间通信、网络通信协议、IP地址和端口以及Java提供的网络应用编程接口等核心概念。 进程间通信是Java网络编程的基础。进程是运行中的程序&#xff0c;而进程间通信则是指不同进程之间进行数据交换和共享信息的过程。在Java中&#xff0c;进程间的…...

鸿蒙DevEco Studio 4.1 Release-模拟器启动方式错误

软件版本&#xff1a;DevEco Studio 4.1 Release 报错提示&#xff1a; 没有权限查看处理指导 Size on Disk 显示1.0MB 尝试方案&#xff08;统统无效&#xff09;&#xff1a; 1、“windows虚拟机监控程序平台”、"虚拟机平台"已开启 启用CPU虚拟化 2、C…...

Linux与windows网络管理

文章目录 一、TCP/IP1.1、TCP/IP概念TCP/IP是什么TCP/IP的作用TCP/IP的特点TCP/IP的工作原理 1.2、TCP/IP网络发展史1.3、OSI网络模型1.4、TCP/IP网络模型1.5、linux中配置网络网络配置文件位置DNS配置文件主机名配置文件常用网络查看命令 1.6、windows中配置网络CMD中网络常用…...

一站式、低成本 | 等保一体机安全解决方案

方案建设背景 等级保护是我国关于信息安全的基本政策&#xff0c;相关政策制度要求单位开展等级保护工作。单位信息系统存在的安全隐患和不足&#xff0c;进行安全整改之后&#xff0c;提高信息系统的信息安全防护能力&#xff0c;降低系统被攻击的风险&#xff0c;维护单位良…...

Grafana(CVE-2021-43798)、Apache Druid 代码执行漏洞

文章目录 一、Grafana 8.x 插件模块目录穿越漏洞&#xff08;CVE-2021-43798&#xff09;二、Apache Druid 代码执行漏洞&#xff08;CVE-2021-25646&#xff09; 一、Grafana 8.x 插件模块目录穿越漏洞&#xff08;CVE-2021-43798&#xff09; Grafana是一个系统监测工具。 利…...

AI赋能EasyCVR视频汇聚/视频监控平台加快医院安防体系数字化转型升级

近来&#xff0c;云南镇雄一医院发生持刀伤人事件持续发酵&#xff0c;目前已造成2人死亡21人受伤。此类事件在医院层出不穷&#xff0c;有的是因为医患纠纷、有的是因为打架斗殴。而且在每日大量流动的人口中&#xff0c;一些不法分子也将罪恶的手伸到了医院&#xff0c;实行扒…...

Cocos Creator 3.x 实现触摸拖动物体(record)

参考&#xff1a;如何实现拖动物体 - Creator 3.x - Cocos中文社区 //注册触摸事件 node.on(Node.EventType.TOUCH_MOVE, this.onTouchMove, this); //事件回调函数 onTouchMove(event) {const location event.getUILocation();event.target.setWorldPosition(location.x, lo…...

漏桶算法:稳定处理大量突发流量的秘密武器!

漏桶算法的介绍 我们经常会遇到这样一种情况&#xff1a;数据包的发送速率不稳定&#xff0c;而网络的带宽有限。如果在短时间内有大量的数据包涌入&#xff0c;那么网络就会出现拥塞&#xff0c;数据包的丢失率就会增大。为了解决这个问题&#xff0c;人们提出了一种叫做“漏…...

淘宝数据分析——Python爬虫模式♥

大数据时代&#xff0c; 数据收集不仅是科学研究的基石&#xff0c; 更是企业决策的关键。 然而&#xff0c;如何高效地收集数据 成了摆在我们面前的一项重要任务。 本文将为你揭示&#xff0c; 一系列实时数据采集方法&#xff0c; 助你在信息洪流中&#xff0c; 找到…...

5G消息和5G阅信的释义与区别 | 赛邮科普

5G消息和5G阅信的释义与区别 | 赛邮科普 在 5G 技术全面普及的当下&#xff0c;历史悠久的短信服务也迎来了前所未有的变革。5G 阅信和 5G 消息就是应运而生的两种短信形态&#xff0c;为企业和消费者带来更加丰富的功能和更加优质的体验。 这两个产品名字和形态都比较接近&am…...

数据结构第一次实验

删除进程未完成 代码&#xff1a; #include "stdio.h" #include <stdlib.h> #include <conio.h> #define getpch(type) (type*)malloc(sizeof(type)) #define NULL 0// PCB struct pcb{// char name[10];// char state;// int super;int ntime;int …...

.NET WebService \ WCF \ WebAPI 部署总结 以及 window 服务 调试,webservice 的安全验证

一、webservice 部署只能部署IIS上&#xff0c; 比较简单&#xff0c;就不做说明了 安全验证&#xff1a; Formwindow身份加个参数&#xff0c;token 定时更新可以Soapheader 》》》soapheader验证 首先要新建一个类 且这个类必须继承SoapHeader类 且这个类型必须有一个无参…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...