当前位置: 首页 > news >正文

Halcon与深度学习框架结合进行图像分析

Halcon 是一款强大的机器视觉软件,而深度学习框架如 TensorFlow 或 PyTorch 在图像识别和分类任务中表现出色。结合两者的优势,可以实现复杂的图像分析任务。Halcon 负责图像预处理和特征提取,而深度学习框架则利用这些特征进行高级分析和识别。

结合 Halcon 与深度学习框架的策略

  1. 图像预处理:使用 Halcon 对图像进行去噪、增强、标准化等操作。
  2. 特征提取:利用 Halcon 提取图像的关键特征,如边缘、轮廓、区域等。
  3. 深度学习模型训练:使用提取的特征训练深度学习模型。
  4. 模型部署:将训练好的模型部署到生产环境中,使用 Halcon 进行实时图像分析。

示例代码

以下是 Halcon 与 Python 结合使用的一个简化示例,其中 Halcon 用于图像预处理,而 Python 用于模型训练和推理。

Halcon 图像预处理
* 读取图像
read_image(Image, 'example_image.tif')* 图像预处理
mean_image(Image, ImagePreprocessed, 'gauss', 3, 3)* 特征提取,例如边缘检测
edges_sub_pix(ImagePreprocessed, Edges, 'sobel', 1, 1)* 将图像转换为 HALCON 绘图窗口可以显示的格式
dev_display(ImagePreprocessed)
dev_display(Edges)
Python 深度学习模型训练
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten# 假设 features 是从 Halcon 特征提取后得到的图像特征数组
features = np.load('halcon_features.npy')# 定义模型
model = Sequential([Flatten(input_shape=(features.shape[1],)),Dense(128, activation='relu'),Dense(10, activation='softmax')  # 假设有10个分类
])# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])# 训练模型
model.fit(features, labels, epochs=10)# 保存模型
model.save('deep_learning_model.h5')
Python 模型推理
# 加载模型
model = tf.keras.models.load_model('deep_learning_model.h5')# 假设 new_features 是 Halcon 预处理后的新图像特征
new_features = ...# 使用模型进行预测
predictions = model.predict(new_features)# 打印预测结果
print(predictions)

讨论

结合 Halcon 和深度学习框架可以充分利用两者的优势。Halcon 的图像处理功能强大,适合处理工业图像,而深度学习框架在模式识别和分类任务中表现出色。通过 Halcon 提供的图像特征,可以训练出强大的深度学习模型。

结论

Halcon 与深度学习框架的结合为图像分析提供了强大的工具。通过 Halcon 进行图像预处理和特征提取,然后利用深度学习框架进行模型训练和推理,可以实现复杂的图像分析任务。然而,这种结合需要考虑两者之间的数据交换和处理流程,以确保系统的高效运行。

请注意,上述代码是一个简化的示例,旨在展示 Halcon 和深度学习框架结合使用的基本思路。在实际应用中,可能需要根据具体的图像特征和分析任务进行调整。此外,Halcon 的 API 可能会随着版本的更新而有所变化,因此在使用时应参考最新的官方文档。

✅作者简介:热爱科研的嵌入式开发者,修心和技术同步精进

❤欢迎关注我的知乎:对error视而不见

代码获取、问题探讨及文章转载可私信。

☁ 愿你的生命中有够多的云翳,来造就一个美丽的黄昏。

🍎获取更多嵌入式资料可点击链接进群领取,谢谢支持!👇

点击领取更多详细资料

相关文章:

Halcon与深度学习框架结合进行图像分析

Halcon 是一款强大的机器视觉软件,而深度学习框架如 TensorFlow 或 PyTorch 在图像识别和分类任务中表现出色。结合两者的优势,可以实现复杂的图像分析任务。Halcon 负责图像预处理和特征提取,而深度学习框架则利用这些特征进行高级分析和识别…...

STL----push,insert,empalce

push_back和emplace_back的区别 #include <iostream> #include <vector>using namespace std; class testDemo { public:testDemo(int n) :num(n) {cout << "构造函数" << endl;}testDemo(const testDemo& other) :num(other.num) {cou…...

解决OpenHarmony设备开发Device Tools工具的QUICK ACCESS一直为空

今天重新安装了OpenHarmony设备开发的环境&#xff0c;在安装过程中&#xff0c;到了工程之后&#xff0c;QUICK ACCESS一直为空。如下图红色大方框的内容一开始没有。 解决方案&#xff1a; 在此记录我的原因&#xff0c;我的原因主要是deveco device tools的远程连接的是z…...

k8s拉起一个pod底层是如何运行的

在Kubernetes中&#xff0c;当你尝试启动一个Pod时&#xff0c;底层的运行方式是由Kubelet服务来管理的。以下是Pod启动过程的简化概述&#xff1a; Kubernetes API Server接收到创建Pod的请求。 API Server将Pod的元数据存储到etcd中&#xff0c;以便于Pod的调度和跟踪。 Sc…...

Java代理模式的实现详解

一、前言 1.1、说明 本文章是在学习mybatis框架源码的过程中&#xff0c;发现对于动态代理Mapper接口这一块的代理实现还是有些遗忘和陌生&#xff0c;因此在本文章中就Java实现代理模式的过程进行一个学习和总结。 1.2、参考文章 《设计模式》&#xff08;第2版&#xff0…...

数据结构与算法===优先队列

文章目录 前言一、优先队列二、应用场景三、代码实现总结 前言 之前写过很多数据结构与算法相关的了&#xff0c;今天看一个新的数据结构&#xff0c;优先队列。优先队列类似队列&#xff0c;却又优先于队列&#xff0c;是堆实现的。接下来详细看看。 一、优先队列 优先队列一…...

HTML常用标签-超链接标签

超链接标签 点击后带有链接跳转的标签 ,也叫作a标签 href属性用于定义连接 href中可以使用绝对路径,以/开头,始终以一个固定路径作为基准路径作为出发点href中也可以使用相对路径,不以/开头,以当前文件所在路径为出发点href中也可以定义完整的URL target用于定义打开的方式 _b…...

财务管理|基于SprinBoot+vue的财务管理系统(源码+数据库+文档)

财务管理系统 目录 基于SprinBootvue的财务管理系统 一、前言 二、系统设计 三、系统功能设计 系统功能实现 1管理员功能模块 2员工功能模块 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&#xff1a; 博主介绍&#xff1…...

快速学习SpringAi

Spring AI是AI工程师的一个应用框架&#xff0c;它提供了一个友好的API和开发AI应用的抽象&#xff0c;旨在简化AI应用的开发工序&#xff0c;例如开发一款基于ChatGPT的对话应用程序。通过使用Spring Ai使我们更简单直接使用chatgpt 1.创建项目 jdk17 引入依赖 2.依赖配置 …...

谈谈 Spring 的过滤器和拦截器

前言 我们在进行 Web 应用开发时&#xff0c;时常需要对请求进行拦截或处理&#xff0c;故 Spring 为我们提供了过滤器和拦截器来应对这种情况。那么两者之间有什么不同呢&#xff1f;本文将详细讲解两者的区别和对应的使用场景。 &#xff08;本文的代码实现首先是基于 Sprin…...

请介绍下H264的多参考帧技术及其应用场景,并请说明下为什么要有多参考帧?

H.264&#xff08;也称为H.264/AVC&#xff09;的多参考帧机制是其编码效率和质量提升的关键部分。这个机制允许编码器在编码当前帧时&#xff0c;参考多个之前已编码的帧。这种多参考帧的方法为编码器提供了更多的选择&#xff0c;使其能够更准确地预测当前帧的内容&#xff0…...

第6章 Elasticsearch,分布式搜索引擎【仿牛客网社区论坛项目】

第6章 Elasticsearch&#xff0c;分布式搜索引擎【仿牛客网社区论坛项目】 前言推荐项目总结第6章 Elasticsearch&#xff0c;分布式搜索引擎1.Elasticsearch入门2.Spring整合ElasticsearchDiscussPostRepositoryDiscussPostControllerEventConsumer 3.开发社区搜索功能 最后 前…...

odoo 全局调整list_controller中默认方法(form_controller和kanban_controller等亦可以同样操作)

需求说明 工作中遇到需要调整odoo原生的tree hearder button显示逻辑&#xff0c;又不可以直接跳转odoo源码&#xff0c;故新加个js全局替换对应的方法&#xff0c;以实现对应功能的同时不影响后期odoo版本升级。 odoo 全局调整list_controller方法示例 创建一个js放到stati…...

大模型日报2024-05-13

大模型日报 2024-05-13 大模型资讯 谷歌推出Gemini生成式AI平台 摘要: 生成式人工智能正在改变我们与技术的互动方式。谷歌最近推出了名为Gemini的新平台&#xff0c;该平台代表了其在生成式AI领域的最新进展。Gemini平台集成了一系列先进的工具和功能&#xff0c;旨在为用户提…...

【使用Condition来模拟生产消费】

使用Condition来模拟生产消费 1. 关于ReentrantLock 和condition的认知?2.使用condition实现生产者-消费者1. 关于ReentrantLock 和condition的认知? /*Q: ReentrantLock是如何实现管理锁和线程的?A: ReentrantLock是并发包中 一个类,它实现了Lock接口,提供了比内置synch…...

5.14学习总结

java聊天室项目 分片上传 将大文件切分为多个小的数据块&#xff08;通常大小为1MB~10MB&#xff09;&#xff0c;然后将这些小数据块分别上传至服务器&#xff0c;最后由服务器将这些小块组合成完整的文件。这种方式可以避免由于网络中断或超时而导致上传失败&#xff0c;并…...

最新极空间部署iCloudpd教程,实现自动同步iCloud照片到NAS硬盘

【iPhone福利】最新极空间部署iCloudpd教程&#xff0c;实现自动同步iCloud照片到NAS硬盘 哈喽小伙伴们好&#xff0c;我是Stark-C~ 我记得我前年的时候发过一篇群晖使用Docker部署iCloudpd容器来实现自动同步iCloud照片的教程&#xff0c;当时热度还很高&#xff0c;可见大家…...

Sketch总结

sketch禁用了lineGap https://www.sketch.com/docs/designing/text/ http://www.sketchcn.com/sketch-chinese-user-manual.html https://github.com/sketch-hq/sketch-document https://developer.sketch.com/file-format/ https://animaapp.github.io/sketch-web-viewer/ htt…...

【iOS】工厂模式

文章目录 前言设计模式的三大原则简单工厂模式工厂方法模式抽象工厂模式关于三兄弟的升级与降级注意 前言 上文讲完了iOS的架构模式&#xff0c;接下来聊一聊设计模式&#xff0c;设计模式有许多&#xff0c;主要介绍一下工厂模式 设计模式的三大原则 S 单一职责原则 告诉我…...

目标检测算法YOLOv6简介

YOLOv6由Chuyi Li等人于2022年提出&#xff0c;论文名为&#xff1a;《YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications》&#xff0c;论文见&#xff1a;https://arxiv.org/pdf/2209.02976 &#xff0c;项目网页&#xff1a;https://github.c…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...