当前位置: 首页 > news >正文

旅游集市数仓建设

旅游集市数仓建设

小白如何从0到1成为大数据工程师

目录

旅游集市数仓建设

1.上传数据

2.可能用到的UDF函数

3.创建所需数据库及表

1)ODS层

①ods_oidd

②ods_wcdr

③ods_ddr

④ods_dpi

2)DWD层

①dwd_res_regn_mergelocation_msk_d

②dwm_staypoint_msk_d

③dws_province_tourist_msk_d

④dws_city_tourist_msk_d

⑤dws_county_tourist_msk_d

3)DIM层

①dim_usertag_msk_m

4)ADS层

1)需求矩阵

2)根据区县游客表计算如下指标


1.上传数据

cd /usr/local/soft/mkdir ctyun/cd ctyun/pwd

2.可能用到的UDF函数

cd /usr/local/soft/mkdir jars/cd jars/pwd

添加资源并注册函数

add jars /usr/local/soft/jars/jtxy_hdfs-1.0-SNAPSHOT.jar;create temporary function get_points as 'ctyun.udf.getPointsUDF';create temporary function dateBetweenUDF as 'ctyun.udf.dateBetweenUDF';create temporary function calLength as 'ctyun.udf.calLength';create temporary function get_city_or_prov_id as 'ctyun.udf.getCityIdOrProvID';

3.创建所需数据库及表

create database ods;use ods;

1)ODS层
①ods_oidd

OIDD是采集A接口的信令数据,包括手机在发生业务时的位置信息。OIDD信令类型数据分为三大 类,呼叫记录、短信记录和用户位置更新记录。

CREATE EXTERNAL TABLE IF NOT EXISTS ods.ods_oidd(mdn string comment '手机号码'  
,start_time string comment '业务开始时间'  
,county_id string comment '区县编码'  
,longi string comment '经度'  
,lati string comment '纬度'  
,bsid string comment '基站标识'  
,grid_id string comment '网格号'  
,biz_type string comment '业务类型'  
,event_type string comment '事件类型'  
,data_source string comment '数据源'  
) 
comment  'oidd位置数据表'PARTITIONED BY (day_id string comment '天分区'  
) 
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY '\t' 
STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat' 
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'  
location '/data/tour/ods/ods_oidd'; // 添加分区
alter table ods.ods_oidd add partition(day_id=20180503);// 加载数据
load data local inpath '/usr/local/soft/ctyun/ods_oidd/day_id=20180503/*' into table ods_oidd partition(day_id=20180503);

//查看数据select * from  ods.ods_oidd limit 10;

dfs -mkdir -p /data/tour/ods/ods_oidd;dfs -ls /data/tour/ods/ods_oidd;dfs -ls /data/tour/ods/;dfs -rmr /data/tour/ods/ods_oidd;

②ods_wcdr

WCDR采集网络中ABIS接口的数据,基于业务发生过程中三个扇区的测量信息,通过三角定位法 确定用户的位置信息。

CREATE EXTERNAL TABLE IF NOT EXISTS ods.ods_wcdr (mdn string comment '手机号码'  
,start_time string comment '业务开始时间'  
,county_id string comment '区县编码'  
,longi string comment '经度'  
,lati string comment '纬度'  
,bsid string comment '基站标识'  
,grid_id string comment '网格号'  
,biz_type string comment '业务类型'  
,event_type string comment '事件类型'  
,data_source string comment '数据源'  
) 
comment  'wcdr位置数据表'PARTITIONED BY (day_id string comment '天分区'  
) 
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY '\t' 
STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat' 
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'  
location '/data/tour/ods/ods_wcdr'; // 添加分区
alter table ods.ods_wcdr add partition(day_id=20180503);// 加载数据
load data local inpath '/usr/local/soft/ctyun/ods_wcdr/day_id=20180503/*' into 
table ods_wcdr partition(day_id=20180503);

//查看数据select * from ods.ods_wcdr limit 10;

③ods_ddr

当前DDR中只有移动数据详单可以提取基站标识,其他语音,短信,增值等业务没有位置信息, 不做为数据融合的基础数据。

CREATE EXTERNAL TABLE IF NOT EXISTS ods.ods_ddr(mdn string comment '手机号码'  
,start_time string comment '业务开始时间'  
,county_id string comment '区县编码'  
,longi string comment '经度'  
,lati string comment '纬度'  
,bsid string comment '基站标识'  
,grid_id string comment '网格号'  
,biz_type string comment '业务类型'  
,event_type string comment '事件类型'  
,data_source string comment '数据源'  
) 
comment  'ddr位置数据表'PARTITIONED BY (day_id string comment '天分区'  
) 
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY '\t' 
STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat' 
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'  
location '/data/tour/ods/ods_ddr'; // 添加分区
alter table ods.ods_ddr add partition(day_id=20180503);// 加载数据
load data local inpath '/usr/local/soft/ctyun/ods_ddr/day_id=20180503/*' into 
table ods_ddr partition(day_id=20180503);

// 查询数据select * from ods.ods_ddr limit 10;

④ods_dpi

移动DPI数据采集用户移动用户数据上网时移动核心网和PDSN之间接口的数据。

CREATE EXTERNAL TABLE IF NOT EXISTS ods.ods_dpi(mdn string comment '手机号码'  
,start_time string comment '业务开始时间'  
,county_id string comment '区县编码'  
,longi string comment '经度'  
,lati string comment '纬度'  
,bsid string comment '基站标识'  
,grid_id string comment '网格号'  
,biz_type string comment '业务类型'  
,event_type string comment '事件类型'  
,data_source string comment '数据源'  
) 
comment  'dpi位置数据表'PARTITIONED BY (day_id string comment '天分区'  
) 
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY '\t' 
STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat' 
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'  
location '/data/tour/ods/ods_dpi'; // 添加分区
alter table ods.ods_dpi add partition(day_id=20180503);// 加载数据
load data local inpath '/usr/local/soft/ctyun/ods_dpi/day_id=20180503/*' into 
table ods_dpi partition(day_id=20180503);

// 查询数据select * from ods.ods_dpi limit 10;

2)DWD层
create database dwd;use dwd;

①dwd_res_regn_mergelocation_msk_d

在ODS层中,由于数据来源不同,原始位置数据被分成了好几张表加载到了我们的ODS层。 为了方便大家的使用,我们在DWD层做了一张位置数据融合表,在这里,我们将oidd、wcdr、 ddr、dpi位置数据汇聚到一张表里面,统一字段名,提升数据质量,这样就有了一张可供大家方 便使用的明细表了。

CREATE EXTERNAL TABLE IF NOT EXISTS dwd.dwd_res_regn_mergelocation_msk_d (mdn string comment '手机号码'  
,start_time string comment '业务开始时间'  
,county_id string comment '区县编码'  
,longi string comment '经度'  
,lati string comment '纬度'  
,bsid string comment '基站标识'  
,grid_id string comment '网格号'  
,biz_type string comment '业务类型'  
,event_type string comment '事件类型'  
,data_source string comment '数据源'  
) 
comment  '位置数据融合表'PARTITIONED BY (day_id string comment '天分区'  
) 
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY '\t' 
STORED AS ORCFilelocation '/data/tour/dwd/dwd_res_regn_mergelocation_msk_d'; // 添加分区
alter table dwd.dwd_res_regn_mergelocation_msk_d add partition(day_id=20180503);

手动下载数据

// hive 直接运行速度太慢,可用手动load/put文件方式
// 手动load
// 注意 上面的建表语句文件存储格式修改为了ORCFile 所以不能直接使用下面的load方法load data local inpath '/usr/local/soft/ctyun/dwd_merge/part-00000*' into 
table dwd.dwd_res_regn_mergelocation_msk_d partition(day_id=20180503);// union allinsert into table dwd.dwd_res_regn_mergelocation_msk_d 
partition(day_id="20180503")select  mdn  ,start_time  ,county_id  ,longi  ,lati  ,bsid  ,grid_id  ,biz_type  ,event_type  ,data_source 
from ods.ods_oiddwhere day_id = "20180503"union allselect  mdn  ,start_time  ,county_id  ,longi  ,lati  ,bsid  ,grid_id  ,biz_type  ,event_type  ,data_source 
from ods.ods_wcdrwhere day_id = "20180503"union allselect  mdn  ,start_time  ,county_id  ,longi  ,lati  ,bsid  ,grid_id  ,biz_type  ,event_type  ,data_source 
from ods.ods_dpiwhere day_id = "20180503"union allselect  mdn  ,start_time  ,county_id  ,longi  ,lati  ,bsid  ,grid_id  
,biz_type  
,event_type  
,data_source 
from ods.ods_ddrwhere day_id = "20180503";

②dwm_staypoint_msk_d

计算一个人在一个网格内的停留时间,按手机号,网格id,区县id分组

1、对所有时间进行排序

2、取第一个点的开始时间和最后一个点的结束时间

create database dwm;use dwm;

CREATE EXTERNAL TABLE IF NOT EXISTS dwm.dwm_staypoint_msk_d (mdn string comment '用户手机号码'  
,longi string comment '网格中心点经度'  
,lati string comment '网格中心点纬度'  
,grid_id string comment '停留点所在电信内部网格号'  
,county_id string comment '停留点区县'  
,duration string comment '机主在停留点停留的时间长度(分钟),lTime-eTime'  
,grid_first_time string comment '网格第一个记录位置点时间(秒级)'  
,grid_last_time string comment '网格最后一个记录位置点时间(秒级)'  
) 
comment  '停留点表'PARTITIONED BY (day_id string comment '天分区'  
) 
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY '\t' 
STORED AS TEXTFILElocation '/data/tour/dwm/dwm_staypoint_msk_d'; 

通过grid_id 网格id 获取 网格中心点经纬度 longi、lati

该SQL执行会出现问题: 执行流程一直处于 0% Map  0% reduce
/**
insert into table dwm.dwm_staypoint_msk_d partition(day_id=20180503)
select  t1.mdn,get_points(grid_id)[0] as longi,get_points(grid_id)[1] as lati,t1.grid_id,t1.county_id,dateBetweenUDF(t1.grid_first_time,t1.grid_last_time) as duration,t1.grid_first_time,t1.grid_last_time
from (select  mdn,grid_id,county_id,min(split(start_time,',')[0]) as grid_first_time,max(split(start_time,',')[1]) as grid_last_timefrom dwd.dwd_res_regn_mergelocation_msk_dwhere day_id="20180503"group by mdn, grid_id, county_id
)t1;
*/优化后的SQL:WITH split_table as (
SELECT
mdn
,grid_id
,county_id
,split(start_time,',')[1] as grid_first_time
,split(start_time,',')[0] as grid_last_time
FROM dwd.dwd_res_regn_mergelocation_msk_d
where day_id="20180503"
)
, max_min_table as (
SELECT
mdn
,grid_id
,county_id
,Max(grid_first_time) OVER(PARTITION BY mdn,grid_id,county_id) as grid_first_time
,MIN(grid_last_time) OVER(PARTITION BY mdn,grid_id,county_id) as grid_last_time
FROM split_table 
)insert into table dwm.dwm_staypoint_msk_d partition(day_id=20180503)
SELECT 
t1.mdn
,get_points(t1.grid_id)[0] as longi
,get_points(t1.grid_id)[1] as lati
,t1.grid_id
,t1.county_id
,dateBetweenUDF(t1.grid_first_time,t1.grid_last_time) as duration
,t1.grid_first_time
,t1.grid_last_time
FROM (
SELECT
mdn
,grid_id
,county_id
,grid_first_time
,grid_last_time
FROM max_min_table
group by 
mdn
,grid_id
,county_id
,grid_first_time
,grid_last_time
) t1

③dws_province_tourist_msk_d

游客定义 出行距离大于300km 常住地在用户画像表中 在省内停留时间大于3个小时

create database dws;use dws;

CREATE EXTERNAL TABLE IF NOT EXISTS dws.dws_province_tourist_msk_d (mdn string comment '手机号大写MD5加密'  
,source_county_id string comment '游客来源区县'  
,d_province_id string comment '旅游目的地省代码'  
,d_stay_time double comment '游客在该省停留的时间长度(小时)'  
,d_max_distance double comment '游客本次出游距离'  
) 
comment  '旅游应用专题数据省级别-天'PARTITIONED BY (day_id string comment '日分区'  
) 
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY '\t' 
STORED AS PARQUETlocation '/data/tour/dws/dws_province_tourist_msk_d';

停留点表dwm_staypoint_msk_d与用户画像维表dim_usertag_msk_m 通过mdn关联,使用 get_city_or_prov_id(county_id,"province")方法,传入county_id,返回province_id,然后按 mdn、province_id、resi_county_id分组,使用calLength(grid_id, resi_grid_id) 传入网格id、居 住地网格id,算出出行距离,并计算每个用户到每个省的累计出行时间,然后取出 累计时间最大 值超过3小时(180分钟),出行距离大于300km的用户

④dws_city_tourist_msk_d

出行距离大于100km 在市内停留时间大于3个小时

CREATE EXTERNAL TABLE IF NOT EXISTS dws.dws_city_tourist_msk_d (mdn string comment '手机号大写MD5加密'  
,source_county_id string comment '游客来源区县'  
,d_city_id string comment '旅游目的地市代码'  
,d_stay_time double comment '游客在该省市停留的时间长度(小时)'  
,d_max_distance double comment '游客本次出游距离'  
) 
comment  '旅游应用专题数据城市级别-天'PARTITIONED BY (day_id string comment '日分区'  
) 
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY '\t' 
STORED AS PARQUETlocation '/data/tour/dws/dws_city_tourist_msk_d';

停留点表dwm_staypoint_msk_d与用户画像维表dim_usertag_msk_m 通过mdn关联,使用 get_city_or_prov_id(county_id,"city")方法,传入county_id,返回city_id,然后按mdn、city_id、 resi_county_id分组,使用calLength(grid_id, resi_grid_id) 传入网格id、居住地网格id,算出出行 距离,并计算每个用户到每个市的累计出行时间,然后取出 累计时间最大值超过3小时(180分 钟),出行距离大于100km的用户

⑤dws_county_tourist_msk_d

出行距离大于10km 在县内停留时间大于3个小时

CREATE EXTERNAL TABLE IF NOT EXISTS dws.dws_county_tourist_msk_d (mdn string comment '手机号大写MD5加密'  ,source_county_id string comment '游客来源区县'  ,d_county_id string comment '旅游目的地县代码'  ,d_stay_time double comment '游客在该县停留的时间长度(小时)'  ,d_max_distance double comment '游客本次出游距离'  
) 
comment  '旅游应用专题数据县级别-天'PARTITIONED BY (day_id string comment '日分区'  
) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' 
STORED AS PARQUETlocation '/data/tour/dws/dws_county_tourist_msk_d';

停留点表dwm_staypoint_msk_d与用户画像维表dim_usertag_msk_m 通过mdn关联,按mdn、 county_id、resi_county_id分组,使用calLength(grid_id, resi_grid_id) 传入网格id、居住地id, 算出出行距离,并计算每个用户到每个县的累计出行时间,然后取出 累计时间最大值超过3小时 (180分钟),出行距离大于10km的用户

运行SQL时报错 我们要创建一下UDF函数

add jars /usr/local/soft/jars/jtxy_hdfs-1.0-SNAPSHOT.jar;create temporary function get_points as 'ctyun.udf.getPointsUDF';create temporary function dateBetweenUDF as 'ctyun.udf.dateBetweenUDF';create temporary function calLength as 'ctyun.udf.calLength';create temporary function get_city_or_prov_id as 'ctyun.udf.getCityIdOrProvID';

insert into table dws.dws_county_tourist_msk_d partition(day_id="20180503")select  ttt1.mdn,ttt1.source_county_id,ttt1.d_county_id,ttt1.d_stay_time,ttt1.d_max_distancefrom(select  mdn,resi_county_id as source_county_id,county_id as d_county_id,sum(duration) as d_stay_time,max(calLength(tt1.grid_id,tt1.resi_grid_id)) as d_max_distancefrom(select  t1.mdn,t1.grid_id,t1.county_id,t1.duration,t2.resi_county_id,t2.resi_grid_idfrom (select  *from dwm.dwm_staypoint_msk_d
where day_id='20180503') t1 join(select *from dim.dim_usertag_msk_mwhere month_id='201805') t2 on t1.mdn = t2.mdn) tt1 group by tt1.mdn,tt1.county_id,tt1.resi_county_id)ttt1 where d_stay_time > 180 and d_max_distance > 10000;

3)DIM层
create database dim;use dim;

①dim_usertag_msk_m
CREATE EXTERNAL TABLE IF NOT EXISTS dim.dim_usertag_msk_m (mdn string comment '手机号大写MD5加密'  
,name string comment '姓名'  
,gender string comment '性别,1男2女'  
,age string comment '年龄'  
,id_number string comment '证件号码'  
,number_attr string comment '号码归属地'  
,trmnl_brand string comment '终端品牌'    
,trmnl_price string comment '终端价格',packg string comment '套餐'  
,conpot string comment '消费潜力'  
,resi_grid_id string comment '常住地网格'  
,resi_county_id string comment '常住地区县'  
) 
comment  '用户画像表'PARTITIONED BY (month_id string comment '月分区'  
) 
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY '\t' 
STORED AS PARQUETlocation '/data/tour/dim/dim_usertag_msk_m'; // 添加分区
alter table dim.dim_usertag_msk_m add partition(month_id=201805);// 加载数据
load data local inpath 
'/usr/local/soft/ctyun/dim_usertag_msk_m/month_id=201805/*' into table 
dim.dim_usertag_msk_m partition(month_id=201805);

// 查询数据select * from dim_usertag_msk_m limit 10;

4)ADS层

根据需求建设

1)需求矩阵

2)根据区县游客表计算如下指标

客流量按天 [区县id,客流量]

select  t1.d_county_id,count(*) as d_county_cnt
from (select  d_county_idfrom dws.dws_county_tourist_msk_dwhere t1.day_id="20180503"
) t1 group by t1.d_county_id;

性别按天 [区县id,性别,客流量]

select  t1.d_county_id,t2.gender,count(*) as d_county_gender_cnt
from(select  mdn,d_county_idfrom dws.dws_county_tourist_msk_dwhere day_id="20180503"
) t1 left join (select  mdn,genderfrom dim.dim_usertag_msk_mwhere month_id=20180503
) t2 on t1.mdn = t2.mdn
group by t1.d_county_id,t2.gender;

年龄按天 [区县id,年龄,客流量]
常住地按天 [区县id,常住地市,客流量]
归属地按天 [区县id,归属地市,客流量]

select  t1.d_county_id,t2.number_attr,count(*) as d_county_number_attr_cnt
from(select  mdn,d_county_idfrom dws.dws_county_tourist_msk_dwhere day_id="20180503"
) t1 left join (select  mdn,number_attrfrom dim.dim_usertag_msk_mwhere month_id=20180503
) t2 on t1.mdn = t2.mdn
group by t1.d_county_id,t2.number_attr;

终端型号按天 [区县id,终端型号,客流量]
消费等级按天 [区县id,消费等级,客流量]
停留时长按天 [区县id,停留时长,客流量]

相关文章:

旅游集市数仓建设

旅游集市数仓建设 小白如何从0到1成为大数据工程师 目录 旅游集市数仓建设 1.上传数据 2.可能用到的UDF函数 3.创建所需数据库及表 1)ODS层 ①ods_oidd ②ods_wcdr ③ods_ddr ④ods_dpi 2)DWD层 ①dwd_res_regn_mergelocation_msk_d ②dwm_s…...

vue实现点击高亮效果

<view class"tabs"><textv-for"(item, index) in subTypes":key"item.id"class"text":class"{ active: index activeIndex }"//动态绑定高亮类&#xff1a;判断下标是否等于当前下标tap"activeIndex index&…...

uniapp 配置请求代理+请求封装

uniapp官网提供了三种方式&#xff1a;什么是跨域 | uni-app官网 1. 通过uniapp自带浏览器 打开项目是不存在跨域的 第二种方式&#xff1a; "h5" : {"template" : "static/index.html","devServer": {"proxy": {&quo…...

代码随想录算法训练营第二十八天|​216.组合总和III​、17.电话号码的字母组合

216.组合总和III 文档讲解:代码随想录 题目链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 这一题与昨天的组合差不多&#xff0c;区别就在只有和是目标值的时候才会加入到result数组中&#xff0c;并且在回溯时&#xff0c;会处理sum的值 class Solution:def __i…...

大模型prompt实例:知识库信息质量校验模块

大模型相关目录 大模型&#xff0c;包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容 从0起步&#xff0c;扬帆起航。 大模型应用向开发路径&#xff1a;AI代理工作流大模型应用开发实用开源项目汇总大模…...

正则表达式和lambda表达式

正则表达式&#xff08;Regular Expressions&#xff09;和Lambda表达式虽然都包含“表达式”一词&#xff0c;但它们在编程中的作用和用法是完全不同的。让我们详细比较一下它们的定义、用途和应用场景&#xff1a; 正则表达式 定义&#xff1a;正则表达式是一种用于匹配文本…...

pyenv 之 python 多版本管理(win11)

1. 背景 常常会用到Python的多个版本&#xff0c;因此可以使用Pyenv来对Python版本进行管理。 2. win11下载 pyenv 在终端执行下载语句&#xff1a; pip install pyenv-win --target D:\software\pyenv 其中 D:\software\pyenv 为你想要下载到的文件目录&#xff0c;建议在 …...

nodemon运行ts文件

https://juejin.cn/post/7035637086451400734 nodemon经常用来调试js文件&#xff0c;大家都是知道的&#xff0c;但是用nodemon来调试ts文件&#xff0c;大家试过吗&#xff1f; 如果直接运行nodemon index.ts是会报错的。 ts 复制代码 //index.ts console.log(1) 需要全局…...

内网渗透瑞士军刀-impacket工具解析(二)

impacket工具解析之Kerberos认证协议 上一期我们介绍了impacket中ntlm协议的实现&#xff0c;在Windows认证中除了使用ntlm认证&#xff0c;还支持Kerberos认证协议&#xff0c;Kerberos认证也是Windows 活动目录中占比最高的认证方式。 什么是Kerberos协议&#xff1f; Kerb…...

huggingface 笔记:pipeline

1 介绍 pipeline() 是使用预训练模型进行推理的最简单和最快速的方式。可以针对不同模态的许多任务直接使用 pipeline() 2 举例&#xff1a;情感分析 2.1 创建pipeline实例 from transformers import pipelineclassifier pipeline("sentiment-analysis") #首先创…...

玩转Matlab-Simscape(初级)-01-从一个简单模型开始学习之旅

** 玩转Matlab-Simscape&#xff08;初级&#xff09;- 01 - 从一个简单模型开始学习之旅 ** 目录 玩转Matlab-Simscape&#xff08;初级&#xff09;- 01 - 从一个简单模型开始学习之旅 前言一、从模板开始建模二、建模一个简单的连杆2.1 建模2.2 生成子系统 总结 前言 在产…...

电脑录屏软件有哪些?这3款神器必须要知道

在当今现代社会&#xff0c;电脑录屏软件已经成为人们日常生活中不可或缺的一部分。无论是录制游戏精彩瞬间、制作教程、还是在线会议记录&#xff0c;一款好用的电脑录屏软件都能帮助我们更高效地完成任务。可是电脑录屏软件有哪些呢&#xff1f;接下来&#xff0c;我们将介绍…...

如何在华企盾DSC防泄密系统中设置文件自动加密?

在华企盾DSC系统中设置文件自动加密的过程&#xff0c;简单且用户友好&#xff0c;确保了企业数据的安全&#xff0c;同时不干扰日常工作流程。以下是设置文件自动加密的步骤&#xff1a; 系统安装与配置&#xff1a;确保华企盾DSC数据防泄密系统已经在企业的网络中正确安装和配…...

【DevOps】Dockerfile详解,做自己的docker镜像

学会使用DockerHub找自己想要的镜像以后&#xff0c;我们会很方便的使用一些公用镜像仓库的Docker镜像。但是开发和部署的过程中&#xff0c;能找到的镜像可能并不能满足我们需要&#xff0c;这样我们就需要自己制作Docker镜像。我们通过需要编写一个 Dockerfile&#xff0c;然…...

CSRF 攻击实验:Token 不存在绕过验证

前言 CSRF&#xff08;Cross-Site Request Forgery&#xff09;&#xff0c;也称为XSRF&#xff0c;是一种安全漏洞&#xff0c;攻击者通过欺骗用户在受信任网站上执行非自愿的操作&#xff0c;以实现未经授权的请求。 CSRF攻击利用了网站对用户提交的请求缺乏充分验证和防范…...

c#教程——索引器

前言&#xff1a; 索引器&#xff08;Indexer&#xff09;可以像操作数组一样来访问对象的元素。它允许你使用索引来访问对象中的元素&#xff0c;就像使用数组索引一样。在C#中&#xff0c;索引器的定义方式类似于属性&#xff0c;但具有类似数组的访问方式。 索引器&#x…...

麒麟服务器上执行可执行脚本报错:bash: ./xx: Permission denied(完整版)

前情提要 本来都好好的&#xff0c;我重启了服务器以后就开始报这个错了&#xff0c;而我的麒麟服务器目前是这个情况&#xff1a; 已经在服务器上配置好了 ssh 免密登录&#xff0c;在命令行里执行 ssh -o StrictHostKeyCheckingno -p 22 usernamexxx.xxx.xxx.xxx 可以正常登…...

触觉美学:移动端UI设计的视觉盛宴

...

前端起dev从110秒减少到7秒, 开发体验大幅提升

[webpack由浅入深]系列的内容 第一层: 了解一个小功能的完整流程. 看完可以满足好奇心和应付原理级别面试.第二层: 源码陪读, webpack源码比较灵活, 自己看容易陷入迷惑. 文章里会贴出关键流程的代码来辅助阅读源码. 如果你正在自己调试, 在这些方法上下断点会节约你宝贵的时间…...

Flink CDC 原理

简介 Flink CDC&#xff08;Change Data Capture&#xff09;是 Apache Flink 提供的一个变更数据捕获工具集。它可以监控数据库的变更&#xff0c;并将这些变更实时地以流的形式提供给下游系统&#xff0c;这些变更包括插入、更新和删除操作。 Flink CDC 适用于需要实时数据…...

Axure网上超市用户端APP原型 (O2O生鲜电商/买菜到家/数字零售/京东到家/抖音超市领域)

作品概况 页面数量&#xff1a;共 100 页 源文件格式&#xff1a;rp格式&#xff0c;兼容 Axure RP 9/10&#xff0c;非程序软件无源代码 适用领域&#xff1a;O2O生鲜电商、网上超市、买菜到家、数字零售 作品特色 本作品为网上超市用户消费端Axure交互原型&#xff0c;属于…...

外包公司中能学到技术的都是那些人?

在外包公司能够有效学习并提升技术的人&#xff0c;通常具备以下特点和行为模式&#xff1a; 自我驱动力强&#xff1a;这类人有强烈的学习欲望和提升自我的动机&#xff0c;不依赖公司安排的培训&#xff0c;而是主动寻找学习资源&#xff0c;如在线课程、技术书籍、开源项目等…...

JavaEE初阶-多线程进阶2

文章目录 前言一、CAS1.1 CAS的概念1.2 原子类1.3 CAS的ABA问题 二、JUC中常用类2.1 Callable接口2.2 ReentrantLock&#xff08;可重入&#xff09;2.3 Semaphore信号量2.4 CountDownLatch类2.5 CopyOnWriteArrayList类2.6 ConcurrentHashMap 前言 对于多线程进阶的部分&…...

B/S和C/S框架

一、B/S框架 B/S框架是指Browser/Server框架&#xff0c;即基于浏览器和服务器的应用程序开发框架。在B/S架构中&#xff0c;用户通过浏览器&#xff08;Browser&#xff09;访问服务器&#xff08;Server&#xff09;上的应用程序或网站&#xff0c;而无需在用户端安装额外的客…...

机器学习中常用的几种距离——欧式、余弦等

目录 一、欧式距离&#xff08;L2距离&#xff09;二、曼哈顿距离&#xff08;L1距离&#xff09;三、汉明距离四、余弦相似度 一、欧式距离&#xff08;L2距离&#xff09; &#xff08;1&#xff09;二维空间的距离公式&#xff08;三维空间的在这个基础上类推&#xff09;&…...

2024 Google I/O Android 相关内容汇总

2024 Google I/O Android 相关内容汇总 本次 Google I/O 的核心虽然是 AI &#xff0c;但是 Android 也是作为主要议题出现&#xff0c; Android 部分可以简单分为产品和开发相关内容&#xff0c;接下来主要介绍这两部分的相关更新。 重点开始开发相关&#xff0c;内容不少 产…...

# 从浅入深 学习 SpringCloud 微服务架构(十八)

从浅入深 学习 SpringCloud 微服务架构&#xff08;十八&#xff09; 一、开源配置中心 Apollo&#xff1a;概述 1、开源配置中心 Apollo Apollo -A reliable configuration management system Apollo(阿波罗)是携程框架部门研发的分布式配置中心&#xff0c;能够集中化管理…...

在SQL Server中使用临时表与普通表的性能差异分析

在SQL Server中&#xff0c;临时表和普通表的性能确实存在差异&#xff0c;具体表现和影响因素如下&#xff1a; 临时表和普通表的区别 存储位置&#xff1a; 临时表&#xff1a;存储在tempdb数据库中&#xff0c;生命周期仅限于当前会话或批处理。当会话结束或批处理完成时&a…...

数据中台管理系统原型

数据中台是一个通用性的基础平台&#xff0c;适用于各类行业场景&#xff0c;数据中台包含多元数据汇聚、数据标准化、数据开发、数据共享、数据智能、数据资产管理等功能&#xff0c;助力企业数字化转型。 数据汇聚 数据汇聚是将不同系统、不同类型的多元源数据汇聚至目标数据…...

数据库练习

在数据库中创建一个表student&#xff0c;用于存储学生信息 CREATE TABLE student( id INT PRIMARY KEY, name VARCHAR(20) NOT NULL, grade FLOAT ); 1、向student表中添加一条新记录&#xff08;记录中id字段的值为1&#xff0c;name字段的值为"monkey"&#xff0c…...