当前位置: 首页 > news >正文

SQL 面试系列(一)【留存率问题】

前言

        在学 HQL 之前是不太了解 SQL 的,以为 SQL 只可以实现 CRUD ,直到面试的公司让我下去多了解一些 SQL ,我才最近开始再次深入学习 MySQL 和 Oracle。而且越学越发现 SQL 真的是一门很有深度的语言,我以前的使用只是皮毛而已,自惭形秽之下决定必须深入学习 SQL ,毕竟大数据工作之后主要就是 SQL 嘛。

        关于留存率问题是一个面试的重点,面一个暑期实习都几乎每次都被问,每次问到留存率我都试图通过障耳法搞晕面试官,结果事实上面试官都能准确发现我回答中的问题。所以不能再拖了,留存率的问题应该好好拿出来深入理解掌握了。

1、留存率问题

1.1、留存率的定义

留存率:用户在注册之后的第 N 天仍然登录的比例,称为第 N 日留存率。

1.2、数据准备

下面我们通过 SQL 先创建一些数据(用户数据 5000条、登录数据 50w条):

-- 留存率问题
-- 示例表
DROP TABLE IF EXISTS t_user;
CREATE TABLE t_user(id INT AUTO_INCREMENT PRIMARY KEY,user_name VARCHAR(50) NOT NULL,register_time DATETIME NOT NULL
);SET SESSION cte_max_recursion_depth=9999999;INSERT INTO t_user(user_name, register_time)
WITH RECURSIVE t AS (SELECT 1 n, '2022-01-01 00:00:00' dUNION ALLSELECT n+1, d + INTERVAL '1' MINUTEFROM tWHERE n<10000
)
SELECT concat('user', n), d FROM t;SELECT date(register_time), count(*) FROM t_user GROUP BY date(register_time);DROP TABLE IF EXISTS t_user_login;
CREATE TABLE t_user_login(id INT AUTO_INCREMENT PRIMARY KEY,uid INT NOT NULL,login_time DATETIME NOT NULL
);SET SESSION cte_max_recursion_depth=9999999;SELECT @@cte_max_recursion_depth;INSERT INTO t_user_login(uid, login_time)
WITH RECURSIVE t AS (SELECT 1 n, rand()*10000 id, '2022-01-01 00:00:00' dUNION ALLSELECT n+1, rand()*10000, d + INTERVAL CEIL(n/3000) secondFROM tWHERE n<500000
)
SELECT CEIL(id), d FROM t;

1.3、计算留存率

1.3.1、思路1:多表连接

我们先计算 1月1日的近一日留存率:

SELECT COUNT(DISTINCT tul.uid)/COUNT(DISTINCT tu.id) rr1
FROM t_user tu
LEFT JOIN t_user_login tul ON (tul.uid = tu.id AND DATE(tul.login_time) = DATE(tu.register_time) + INTERVAL '1' DAY)
WHERE tu.register_time BETWEEN '2022-01-01 00:00:00' AND '2022-01-01 23:59:59';

根据这个思路,我们可以同样实现多日的留存率:

SELECT date(u.register_time),100*count(DISTINCT ul1.uid)/count(DISTINCT u.id) rr1,100*count(DISTINCT ul2.uid)/count(DISTINCT u.id) rr3,100*count(DISTINCT ul3.uid)/count(DISTINCT u.id) rr7,100*count(DISTINCT ul4.uid)/count(DISTINCT u.id) rr30
FROM t_user u
LEFT JOIN t_user_login ul1 ON (ul1.uid = u.id AND date(ul1.login_time) = date(u.register_time) + INTERVAL '1' DAY)
LEFT JOIN t_user_login ul2 ON (ul2.uid = u.id AND date(ul2.login_time) = date(u.register_time) + INTERVAL '3' DAY)
LEFT JOIN t_user_login ul3 ON (ul3.uid = u.id AND date(ul3.login_time) = date(u.register_time) + INTERVAL '7' DAY)
LEFT JOIN t_user_login ul4 ON (ul4.uid = u.id AND date(ul4.login_time) = date(u.register_time) + INTERVAL '30' DAY)
GROUP BY date(u.register_time);

运行结果

date(u.register_time)rr1rr3rr7rr30
2022-01-0161.180645.416734.583318.9583
2022-01-0250.000043.680632.291718.4028
2022-01-0344.513938.750031.458318.5417
2022-01-0443.055636.111129.513916.7361
2022-01-0538.194434.652829.305616.3194
2022-01-0635.416733.333328.194418.1944
2022-01-0734.411829.926527.573517.6471

1.3.2、思路2:窗口函数

        需要细心的地方就是每个聚合函数的粒度(group by 哪些字段),不同的粒度代表的含义是完全不一样的(比如 group by register_date,login_date 和 group by register_date 是不同的粒度,前者的最细粒度是 login_date,后者的最细粒度是 register_date)

WITH t1 AS(
SELECT tu.id,tul.uid,DATE(tu.register_time) reg_date,DATE(tul.login_time) login_date,DENSE_RANK() OVER (PARTITION BY DATE(tu.register_time) ORDER BY tu.id) reg_rk, -- 按照用户注册日期进行分区 并按照用户id进行排名 得到的max(排名)就是当天注册的总人数DENSE_RANK() OVER (PARTITION BY DATE(tu.register_time),DATE(tul.login_time) ORDER BY tul.uid) log_rk -- max(排名)就是当天登录的人数
FROM t_user tu
LEFT JOIN t_user_login tul
ON (tu.id = tul.uidAND(DATE(tul.login_time) = DATE(tu.register_time) + INTERVAL 1 DAYOR DATE(tul.login_time) = DATE(tu.register_time) + INTERVAL 3 DAYOR DATE(tul.login_time) = DATE(tu.register_time) + INTERVAL 7 DAYOR DATE(tul.login_time) = DATE(tu.register_time) + INTERVAL 30 DAY ))
),
t2 AS (-- 这里的 MAX(reg_rk) 并不代表 reg_date 这一天注册的人数,因为它是按照 reg_date 和 login_date 共同分组的-- 所以最细粒度是 log_date 而不是 reg_date,所以当只按照 reg_date 分组时得到的才是-- 所以这里得到的结果中 log_sum 可以代表reg_date注册后的在log_date登录的用户数,而 reg_sum 并不能代表reg_date注册的总人数SELECT reg_date, login_date, MAX(reg_rk) reg_sum, MAX(log_rk) log_sumFROM t1GROUP BY reg_date,login_date -- 因为是 left join 所以会保留所有注册信息,这里同时按照 login_date 分组就会把 login_date为null的数据排除在统计范围之外
)
SELECT reg_date, MAX(reg_sum), -- 这里的max的粒度才是reg_date,得到才是正确的注册人数MAX(CASE WHEN login_date = reg_date + INTERVAL 1 DAY THEN log_sum END)/MAX(reg_sum) rr1,MAX(CASE WHEN login_date = reg_date + INTERVAL 3 DAY THEN log_sum END)/MAX(reg_sum) rr3,MAX(CASE WHEN login_date = reg_date + INTERVAL 7 DAY THEN log_sum END)/MAX(reg_sum) rr7,MAX(CASE WHEN login_date = reg_date + INTERVAL 30 DAY THEN log_sum END)/MAX(reg_sum) rr30
from t2
GROUP BY reg_date;

相关文章:

SQL 面试系列(一)【留存率问题】

前言 在学 HQL 之前是不太了解 SQL 的&#xff0c;以为 SQL 只可以实现 CRUD &#xff0c;直到面试的公司让我下去多了解一些 SQL &#xff0c;我才最近开始再次深入学习 MySQL 和 Oracle。而且越学越发现 SQL 真的是一门很有深度的语言&#xff0c;我以前的使用只是皮毛而已&a…...

2024OD机试卷-游戏分组 (java\python\c++)

题目:游戏分组 题目描述 部们准备举办一场 王者荣耀 表演赛,有 10 名游戏爱好者参与,分为两队,每队 5 人。 每位参与者都有一个评分,代表着他的游戏水平。为了表演赛尽可能精彩,我们需要把 10 名参赛者分为实力尽量相近的两队。 一队的实力可以表示为这一队 5 名队员的…...

重装前端整体流程

用户管理 --汇总 -- 明细-CSDN博客 一、node 这个看环境变量 2023最新版Node.js下载安装及环境配置教程&#xff08;非常详细&#xff09;从零基础入门到精通&#xff0c;看完这一篇就够了_nodejs安装及环境配置-CSDN博客 配置到国内镜像的时候&#xff0c;去看&#xff0c;淘…...

Oracle Database 23ai Free版本体验

Oracle Database 23ai 体验链接&#xff1a; Oracle Database 23ai Free (https://www.oracle.com/database/free/get-started/) Autonomous Database 23ai Container Image (https://www.oracle.com/autonomous-database/free-trial/) Oracle GoldenGate 23ai (https://www…...

84.网络游戏逆向分析与漏洞攻防-游戏技能系统分析-筛选与技能有关的数据包

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 如果看不懂、不知道现在做的什么&#xff0c;那就跟着做完看效果&#xff0c;代码看不懂是正常的&#xff0c;只要会抄就行&#xff0c;抄着抄着就能懂了 内容…...

维护表空间中的数据文件

目录 向表空间中添加数据文件 从表空间中删除数据文件 删除users表空间中的users02.dbf数据文件 对数据文件的自动扩展设置 Oracle从入门到总裁:​​​​​​https://blog.csdn.net/weixin_67859959/article/details/135209645 维护表空间中的数据文件主要包括向表空间中添…...

2024五月母亲节嘉年华活动方案

2024以花之名 致谢母亲簪花趣味亲子五月母亲节嘉年华活动方案-43P 活动策划信息&#xff1a; 方案页码&#xff1a;43页 文件格式&#xff1a;PPT 方案简介&#xff1a; 岁月温柔治愈 母爱闪闪发光 一年一度的PY圈孝子孝女大赛即将到来 本次母亲节&#xff0c;“以花之名…...

Linux 第三十三章

&#x1f436;博主主页&#xff1a;ᰔᩚ. 一怀明月ꦿ ❤️‍&#x1f525;专栏系列&#xff1a;线性代数&#xff0c;C初学者入门训练&#xff0c;题解C&#xff0c;C的使用文章&#xff0c;「初学」C&#xff0c;linux &#x1f525;座右铭&#xff1a;“不要等到什么都没有了…...

低空经济:无人机竞赛详解

无人机竞赛市场近年来呈现出蓬勃发展的态势&#xff0c;其市场价值不仅体现在竞赛本身&#xff0c;还体现在推动无人机技术创新、拓展应用场景以及促进产业链发展等多个方面。 一、比赛项目介绍 无人机竞赛通常分为多个项目&#xff0c;包括竞速赛、技巧赛、航拍赛等。每个项目…...

CAD插入文字到另一图形样式变相同

CAD从一张图形复制到另外一张图形后&#xff0c;文字样式变成一样是因为两张图所用的文字样式名称一样&#xff0c;但是样式里面的使用字体样式不一样。如下图所示&#xff0c;找到工具栏中的注释 &#xff0c;点击文字样式。里面就会显示当前图形中使用的样式名称及其对应的字…...

算法随想录第八天打卡|344.反转字符串,541. 反转字符串II, 卡码网:54.替换数字, 151.翻转字符串里的单词,卡码网:55.右旋转字符串

344.反转字符串 建议&#xff1a; 本题是字符串基础题目&#xff0c;就是考察 reverse 函数的实现&#xff0c;同时也明确一下 平时刷题什么时候用 库函数&#xff0c;什么时候 不用库函数 题目链接/文章讲解/视频讲解&#xff1a;代码随想录 Python class Solution:def reve…...

外卖系统的JWT实现登录

1、什么是JWT jwt可以生成一个加密的token&#xff0c;作为用户登录的令牌&#xff0c;当用户登陆成功之后&#xff0c;发放给客户端。请求需要登录的资源或者接口的时候&#xff0c;将token携带&#xff0c;后端验证token是否合法。jwt有三部分组成&#xff1a; A&#xff1a;…...

基于springboot实现的家具销售电商平台

开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 服务器&#xff1a;tomcat7 数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09; 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&…...

STM32中的Systick的使用

SysTick&#xff0c;全称System Tick Timer&#xff0c;是Cortex-M microcontrollers内核中提供的一个简单而有效的系统定时器&#xff0c;设计用来给操作系统提供时间基准&#xff0c;或用于生成周期性的中断。STM32系列微控制器&#xff0c;作为基于ARM Cortex-M内核的设备&a…...

做一个桌面悬浮翻页时钟

毛玻璃效果翻页桌面悬浮时钟&#xff0c;TopMost&#xff08;Topmost“True”&#xff09;&#xff0c;不在任务栏显示&#xff08;ShowInTaskbar“False”&#xff09;&#xff0c;在托盘区显示图标&#xff0c;双击托盘区图标实现最小化和还原&#xff0c;右键托盘图标可选“…...

Transformers中加载预训练模型的过程剖析(一)

使用HuggingFace的Transformers库加载预训练模型来处理下游深度学习任务很是方便,然而加载预训练模型的方法多种多样且过程比较隐蔽,这在一定程度上会给人带来困惑。因此,本篇文章主要讲一下使用不同方法加载本地预训练模型的区别、加载预训练模型及其配置的过程,藉此做个记…...

数据可视化的艺术:使用Matplotlib和Seaborn揭示数据故事

引言 数据可视化是数据分析中的关键一环&#xff0c;它帮助我们理解数据模式、趋势和异常。在Python中&#xff0c;Matplotlib和Seaborn是两个流行的数据可视化库&#xff0c;它们提供了丰富的图表和图形选项&#xff0c;使数据的可视化变得简单而强大。 Matplotlib&#xff…...

2024全新小狐狸AI免授权源码

源码安装说明&#xff1a; 下 载 地 址 &#xff1a; runruncode.com/php/19757.html 1. 在宝塔新建一个站点&#xff0c;选择 PHP 版本为 7.2、7.3 或 7.4。将压缩包上传到站点的根目录&#xff0c;并设置运行目录为 /public。 2. 导入数据库文件&#xff0c;该文件位于 …...

Python基础详解四

目录 一&#xff0c;Json解析 二&#xff0c;pyecharts模块 三&#xff0c;类和对象 四&#xff0c;类型注解 一&#xff0c;Json解析 字典转换为JSON&#xff1a; import jsondata [{"name":"袁震","age":20},{"name":"张三&…...

es6新语法和ajax和json

es6新语法 1.定义变量&#xff1a;let 2.定义常量&#xff1a;const <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者&#xff1a;来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布&#xff0c;Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明&#xff0c;Elastic 作为 …...