当前位置: 首页 > news >正文

colab使用本地数据集微调llama3-8b模型

        在Google的Colab上面采用unsloth,trl等库,训练数据集来自Google的云端硬盘,微调llama3-8b模型,进行推理验证模型的微调效果。

        保存模型到Google的云端硬盘可以下载到本地供其它使用。

准备工作:将训练数据集上传到google的云端硬盘根目录下,文件名就叫做train.json

train.json里面的数据格式如下:

[
  {
    "instruction": "你好",
    "output": "你好,我是智能助手胖胖"
  },
  {
    "instruction": "hello",
    "output": "Hello! I am 智能助手胖胖, an AI assistant developed by 丹宇码农. How can I assist you ?"
  }

......

]

采用unsloth库、trl库、transformers等库。

直接上代码:

%%capture
# Installs Unsloth, Xformers (Flash Attention) and all other packages!
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --no-deps "xformers<0.0.26" trl peft accelerate bitsandbytesfrom unsloth import FastLanguageModel
import torch
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = ["unsloth/mistral-7b-bnb-4bit","unsloth/mistral-7b-instruct-v0.2-bnb-4bit","unsloth/llama-2-7b-bnb-4bit","unsloth/gemma-7b-bnb-4bit","unsloth/gemma-7b-it-bnb-4bit", # Instruct version of Gemma 7b"unsloth/gemma-2b-bnb-4bit","unsloth/gemma-2b-it-bnb-4bit", # Instruct version of Gemma 2b"unsloth/llama-3-8b-bnb-4bit", # [NEW] 15 Trillion token Llama-3
] # More models at https://huggingface.co/unslothmodel, tokenizer = FastLanguageModel.from_pretrained(model_name = "unsloth/llama-3-8b-bnb-4bit",max_seq_length = max_seq_length,dtype = dtype,load_in_4bit = load_in_4bit,# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)model = FastLanguageModel.get_peft_model(model,r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128target_modules = ["q_proj", "k_proj", "v_proj", "o_proj","gate_proj", "up_proj", "down_proj",],lora_alpha = 16,lora_dropout = 0, # Supports any, but = 0 is optimizedbias = "none",    # Supports any, but = "none" is optimized# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long contextrandom_state = 3407,use_rslora = False,  # We support rank stabilized LoRAloftq_config = None, # And LoftQ
)alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.### Instruction:
{}### Input:
{}### Response:
{}"""EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):instructions = examples["instruction"]outputs      = examples["output"]texts = []for instruction, output in zip(instructions, outputs):input = ""# Must add EOS_TOKEN, otherwise your generation will go on forever!text = alpaca_prompt.format(instruction, input, output) + EOS_TOKENtexts.append(text)return { "text" : texts, }
passfrom datasets import load_dataset
#dataset = load_dataset("yahma/alpaca-cleaned", split = "train")
#dataset = dataset.map(formatting_prompts_func, batched = True,)
from google.colab import drive
# 挂载云端硬盘,加载成功后,在左边的文件树中将会多一个 /content/drive/MyDrive/ 目录
drive.mount('/content/drive')# 加载本地数据集:
# 有instruction和output,input为空字符串
from datasets import load_datasetdata_home = r"/content/drive/MyDrive/"
data_dict = {"train": os.path.join(data_home, "train.json"),#"validation": os.path.join(data_home, "dev.json"),
}
dataset = load_dataset("json", data_files=data_dict, split = "train")
print(dataset[0])
dataset = dataset.map(formatting_prompts_func, batched = True,)from trl import SFTTrainer
from transformers import TrainingArgumentstrainer = SFTTrainer(model = model,tokenizer = tokenizer,train_dataset = dataset,dataset_text_field = "text",max_seq_length = max_seq_length,dataset_num_proc = 2,packing = False, # Can make training 5x faster for short sequences.args = TrainingArguments(per_device_train_batch_size = 2,gradient_accumulation_steps = 4,warmup_steps = 5,max_steps = 60,learning_rate = 2e-4,fp16 = not torch.cuda.is_bf16_supported(),bf16 = torch.cuda.is_bf16_supported(),logging_steps = 1,optim = "adamw_8bit",weight_decay = 0.01,lr_scheduler_type = "linear",seed = 3407,output_dir = "outputs",),
)# 开始微调训练
trainer_stats = trainer.train()#推理
# alpaca_prompt = Copied from above
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[alpaca_prompt.format("你是谁?", # instruction"", # input"", # output - leave this blank for generation!)
], return_tensors = "pt").to("cuda")outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)#此处输出的答案,能明显看到就是自己训练的数据,而不是原来模型的输出。说明微调起作用了# 保存模型,改成挂接的云硬盘目录也可以保存到google的个人云存储空间,然后打开个人云存储空间下载到本地
model.save_pretrained("lora_model") # Local saving
tokenizer.save_pretrained("lora_model")# Merge to 16bit
if True: model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",)

其实可以将.ipynb文件上传到个人云存储空间,双击这个文件就会打开colab,然后依次执行代码即可,随时可以增加、删除、修改,特别方便,还能免费使用GPU、CPU等资源,真的是广大AI爱好者的不错选择。

相关文章:

colab使用本地数据集微调llama3-8b模型

在Google的Colab上面采用unsloth,trl等库&#xff0c;训练数据集来自Google的云端硬盘&#xff0c;微调llama3-8b模型&#xff0c;进行推理验证模型的微调效果。 保存模型到Google的云端硬盘可以下载到本地供其它使用。 准备工作&#xff1a;将训练数据集上传到google的云端硬盘…...

YOLO数据集制作(二)|json文件转txt验证

以下教程用于验证转成YOLO使用的txt格式&#xff0c;适用场景&#xff1a;矩形框&#xff0c;配合json格式文件转成YOLO使用的txt格式脚本使用。 https://blog.csdn.net/StopAndGoyyy/article/details/138681454 使用方式&#xff1a;将img_path和label_path分别填入对应的图…...

linux常用命令(持续更新)

1.sudo -i 切换root权限 2. ll 和 ls 查看文件夹下面的文件 3. cat 查看文件内容 cat xxx.txt |grep 好 筛选出有好的内容 4. vi 编辑文件 点击insert进入编辑模式 编辑完之后点击Esc退出编辑模式 数据:wq!回车保存文件 5. ssh 连接到可以访问的系统 6. telnet 看端口是否可以…...

Excel表格导入/导出数据工具类

Excel表格导入/导出数据工具 这里以java语言为类&#xff0c;实现一个简单且较通用的Excel表格数据导入工具类。 自定义注解 ExcelColumn写导入工具类 ExcelImportUtil 自定义注解 ExcelColumn Retention(RetentionPolicy.RUNTIME) Target({java.lang.annotation.ElementTy…...

Python自学之路--004:Python使用注意点(原始字符串‘r’\字符转换\‘wb’与‘w区别’\‘\‘与‘\\’区别)

目录 1、原始字符串‘r’ 2、字符转换问题 3、open与write函数’wb’与’w’区分 4、Python里面\与\\的区别 1、原始字符串‘r’ 以前的脚本通过Python2.7写的&#xff0c;通过Python3.12去编译发现不通用了&#xff0c;其实也是从一个初学者的角度去看待这些问题。 其中的\…...

javaEE进阶——SpringBoot与SpringMVC第一讲

文章目录 什么是springMVCSpringMVC什么是模型、视图、控制器MVC和SpringMVC的关系SpringMVC的使用第一个SpringMVC程序RestController什么是注解 那么RestController到底是干嘛的呢&#xff1f;RequestMapping 如何接收来自请求中的querystryingRequestParamRequestMapping(&q…...

LabVIEW和usrp连接实现ofdm通信系统 如何实现

1. 硬件准备 USRP设备&#xff1a;选择合适的USRP硬件&#xff08;如USRP B210或N210&#xff09;&#xff0c;并确保其与计算机连接&#xff08;通常通过USB或以太网&#xff09;。天线&#xff1a;根据频段需求选择合适的天线。 2. 软件安装 LabVIEW&#xff1a;安装LabVI…...

NGINX SPRING HTTPS证书

服务器&#xff1a;xxx.xxx.xxx.56 客户端器&#xff1a;xxx.xxx.xxx.94##生成服务器证书和密钥容器 keytool -genkey -alias tas-server -keypass 250250 -keyalg RSA -keysize 2048 -validity 3650 -keystore D:\https证书\tas-server.jks -storepass 250250 -dname "C…...

WordPress插件Plus WebP,可将jpg、png、bmp、gif图片转为WebP

现在很多浏览器和CDN都支持WebP格式的图片了&#xff0c;不过我们以前的WordPress网站使用的图片都是jpg、png、bmp、gif&#xff0c;那么应该如何将它们转换为WebP格式的图片呢&#xff1f;推荐安装这款Plus WebP插件&#xff0c;可以将上传到媒体库的图片转为WebP格式图片&am…...

GitLab CI/CD的原理及应用详解(五)

本系列文章简介&#xff1a; 在当今快速变化的软件开发环境中&#xff0c;持续集成&#xff08;Continuous Integration, CI&#xff09;和持续交付&#xff08;Continuous Delivery, CD&#xff09;已经成为提高软件开发效率、确保代码质量以及快速响应市场需求的重要手段。Gi…...

连锁收银系统如何助力实体门店私域运营

作为实体门店&#xff0c;私域运营是提升客户黏性和增加复购率的重要策略之一。而连锁收银系统在私域运营中扮演了关键的角色&#xff0c;它不仅可以帮助门店管理客户信息和消费记录&#xff0c;还能够通过数据分析和营销功能提供个性化的服务和推广活动。下面看看连锁收银系统…...

JETBRAINS IDES 分享一个2099通用试用码!PhpStorm 2024 版 ,支持一键升级

文章目录 废话不多说上教程&#xff1a;&#xff08;动画教程 图文教程&#xff09;一、动画教程激活 与 升级&#xff08;至最新版本&#xff09; 二、图文教程 &#xff08;推荐&#xff09;Stage 1.下载安装 toolbox-app&#xff08;全家桶管理工具&#xff09;Stage 2 : 下…...

超级好用的C++实用库之MD5信息摘要算法

&#x1f4a1; 需要该C实用库源码的大佬们&#xff0c;可搜索微信公众号“希望睿智”。添加关注后&#xff0c;输入消息“超级好用的C实用库”&#xff0c;即可获得源码的下载链接。 概述 MD5信息摘要算法是一种广泛使用的密码散列函数&#xff0c;由Ronald L. Rivest在1991年设…...

ssm132医院住院综合服务管理系统设计与开发+vue

医院住院综合服务管理系统的设计与实现 摘 要 互联网发展至今&#xff0c;无论是其理论还是技术都已经成熟&#xff0c;而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播&#xff0c;搭配信息管理工具可以很好地为人们提供服务。针对医院住院信息管理混乱&…...

在Linux上安装并启动Redis

目录 安装gcc环境 上传redis文件 启动redis-server 后台启动redis-server 查看redis启动状态 参考文章&#xff1a;Linux 安装 Redis 及踩坑 - 敲代码的阿磊 - 博客园 (cnblogs.com) 准备&#xff1a;打开VMware Workstation&#xff0c;创建一个虚拟机&#xff0c;进入管…...

vue3.0+antdv的admin管理系统vue-admin-beautiful推荐

前言 几年前&#xff0c;笔者自学了vue这一优秀的前端框架&#xff0c;但苦于没项目练手&#xff0c;无意间发现了vue-admin-beautiful这一优秀的前端集成框架。当时就使用它做了一很有意思的小项目---终端监控云平台&#xff0c;实现了前端和后台的整体功能。整体方案介绍参见…...

C# WinForm —— 20 RichTextBox 介绍

1. 简介 富文本框&#xff0c;拥有TextBox的所有功能&#xff0c;&#xff0c;但还有更多高级的文本输入和编辑功能&#xff0c;比如设置字体颜色、样式、段落、图片、超链接等 2. 常用属性 属性解释(Name)控件ID&#xff0c;在代码里引用的时候会用到,一般以 rtxt 开头Acce…...

springmvc数据绑定

数据绑定 数据绑定流程 springmvc框架将ServletRequest对象及目标方法的入参实例传递给WebDataBinderFactory实例&#xff0c;以创建DataBinder实例对象 DataBinder调用装配在springmvc上下文中的ConversionService组件进行数据类型转换、数据格式化工作。将Servlet中的请求信息…...

Milvus的存储/计算分离

前言 根据数据面与控制面相隔离的原则&#xff0c;从可扩展性和灾难恢复来看&#xff0c;Milvus由4个相互独立的层组成 访问层 由一系列无状态的代理组成&#xff0c;访问层是系统和用户之间的第一层&#xff0c;它主要是验证客户端请求和规整返回的结果 代理是无状态的&am…...

SHAP值是个什么值?

SHAP 值是个什么值&#xff1f; 起初&#xff0c;我们知道SHAP值代表了变量对于结局变量的贡献程度&#xff0c;然而&#xff0c;在做了一些SHAP分析之后&#xff0c;感觉有一些SHAP值还是有一些难以理解的地方&#xff0c;比如&#xff0c;为什么有负值&#xff1f;SHAP值为0…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...