深度学习知识点全面总结
目录
1.深度学习的一些重要知识点
神经网络:
深度学习模型:
深度学习技术:
深度学习应用:
2.深度学习、机器学习、人工智能
3.用python实现简单神经网络模型
4.用于深度学习显卡推荐排序
5.深度学习如何入门?
掌握基础知识:
选择学习资源:
实践项目:
参与社区和讨论:
持续学习和实践:
深度学习是一种人工智能技术,它模仿人脑神经网络的工作方式,通过大量的数据和计算来自动学习和识别模式。

1.深度学习的一些重要知识点
-
神经网络:
- 神经元和激活函数: 神经网络是由许多神经元组成的,每个神经元通过激活函数将输入转化为输出。
- 前馈神经网络: 数据从输入层到输出层的单向传递。
- 反向传播算法: 通过计算损失函数对模型参数进行更新,使得输出尽量接近真实标签。
-
深度学习模型:
- 卷积神经网络 (CNN): 用于图像和视频处理的模型,通过卷积层和池化层提取图像的特征。
- 递归神经网络 (RNN): 用于处理序列数据的模型,可以记忆先前的信息,适用于自然语言处理和时间序列预测。
- 长短期记忆网络 (LSTM): RNN的一种变体,能够更好地处理长期依赖关系。
-
深度学习技术:
- 无监督学习: 模型在没有标签的情况下进行训练,通过学习数据的内在结构来发现模式。
- 迁移学习: 将在一个任务上学到的知识迁移到另一个任务上,加快学习速度和提高模型性能。
- 增强学习: 模型通过与环境的交互来学习最佳行为策略,通常应用于游戏和机器人控制等领域。
-
深度学习应用:
- 计算机视觉: 图像分类、目标检测、图像分割等。
- 自然语言处理: 语言模型、机器翻译、文本生成等。
- 声音处理: 语音识别、语音合成等。
- 推荐系统: 个性化推荐、广告推荐等。
深度学习是一个庞大而复杂的领域,上述知识点只是其中的一部分。了解这些知识点是入门深度学习的基础,但要深入掌握深度学习还需要学习更多的理论和实践经验。

2.深度学习、机器学习、人工智能
深度学习、机器学习、人工智能三者关联关系。
人工智能(Artificial Intelligence,AI)是一个广泛的概念,指的是使计算机系统具备类似人类智能的能力。这包括了各种技术和方法,如机器学习、自然语言处理、计算机视觉等,旨在使计算机能够感知、理解、学习、推理和做出决策等。
机器学习(Machine Learning)是一种人工智能的分支,研究计算机如何通过从数据中学习和发现模式,以自主地进行决策和预测。
深度学习(Deep Learning)是人工智能中的一个子领域,是机器学习的一种特殊形式。深度学习算法模仿人脑神经网络的结构和工作原理,通过多层次的神经网络来学习和分析数据,以获取模式和特征。深度学习具有强大的学习能力和自动特征提取能力,广泛应用于语音识别、图像识别、自然语言处理等领域。
总结:深度学习是机器学习的一种重要方法,而机器学习是人工智能的一个重要技术手段。因此,可以说深度学习是机器学习的一部分,机器学习又是人工智能的一部分。
3.用python实现简单神经网络模型
以下是一个使用Python实现的简单神经网络模型的示例代码:
import numpy as np# 定义激活函数sigmoid
def sigmoid(x):return 1 / (1 + np.exp(-x))# 定义神经网络类
class NeuralNetwork:def __init__(self, input_size, hidden_size, output_size):self.input_size = input_sizeself.hidden_size = hidden_sizeself.output_size = output_size# 初始化权重和偏差self.weights1 = np.random.randn(self.input_size, self.hidden_size)self.bias1 = np.zeros((1, self.hidden_size))self.weights2 = np.random.randn(self.hidden_size, self.output_size)self.bias2 = np.zeros((1, self.output_size))def forward(self, X):# 前向传播计算输出self.z1 = np.dot(X, self.weights1) + self.bias1self.a1 = sigmoid(self.z1)self.z2 = np.dot(self.a1, self.weights2) + self.bias2self.a2 = sigmoid(self.z2)return self.a2def backward(self, X, y, output, learning_rate):# 反向传播更新参数self.error = output - yself.delta2 = self.error * sigmoid(self.z2) * (1 - sigmoid(self.z2))self.delta1 = np.dot(self.delta2, self.weights2.T) * sigmoid(self.z1) * (1 - sigmoid(self.z1))self.weights2 -= learning_rate * np.dot(self.a1.T, self.delta2)self.bias2 -= learning_rate * np.sum(self.delta2, axis=0, keepdims=True)self.weights1 -= learning_rate * np.dot(X.T, self.delta1)self.bias1 -= learning_rate * np.sum(self.delta1, axis=0)def train(self, X, y, epochs, learning_rate):for epoch in range(epochs):output = self.forward(X)self.backward(X, y, output, learning_rate)if epoch % 1000 == 0:loss = np.mean(np.square(output - y))print(f"Epoch {epoch}, Loss: {loss:.4f}")def predict(self, X):return self.forward(X)# 创建一个简单的数据集
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]])# 创建神经网络对象并训练模型
model = NeuralNetwork(input_size=2, hidden_size=3, output_size=1)
model.train(X, y, epochs=10000, learning_rate=0.1)# 使用训练好的模型进行预测
test_input = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
predictions = model.predict(test_input)
print("Predictions:", predictions)
上述示例代码是一个简单的多层神经网络,它有一个输入层、一个隐藏层和一个输出层。使用sigmoid函数作为激活函数,采用反向传播算法更新模型的权重和偏差。在训练过程中,通过调整学习率和迭代次数来优化模型。最后,模型可以使用predict方法进行预测,并输出预测结果。

4.用于深度学习显卡推荐排序
在深度学习中,训练神经网络的计算量非常大,因此选择合适的显卡是至关重要的。以下是一些常见的显卡推荐排序(按性能从高到低):
NVIDIA RTX 3090:这是目前(2021年)市场上最强大的显卡之一,性能出色,适合大规模的深度学习任务。
NVIDIA RTX 3080:与RTX 3090相比,性能稍低一些,但价格相对较低,仍然是一个强大的选择。
NVIDIA RTX 3070:性能适中,价格较实惠,适合入门级和中等规模的深度学习任务。
NVIDIA RTX 3060 Ti:性能不如前面三款,但比较平衡,价格相对较低,适合入门级和中等规模的深度学习任务。
NVIDIA GTX 1660 Ti / Super:虽然不是最新的显卡,但在一些轻量级的深度学习任务中仍然表现良好。
请注意,以上只是一些常见的显卡推荐,选择显卡时还需要考虑其他因素,例如功耗、散热、显存等。此外,不同的深度学习框架对显卡的支持程度也有所区别,所以在选择显卡时,也要考虑与所使用框架的兼容性。最好在购买前查阅一些深度学习论坛或技术社区,了解其他用户的使用经验和推荐。
5.深度学习如何入门?

要入门深度学习,您可以按照以下步骤进行:
掌握基础知识:
熟悉机器学习、神经网络和深度学习的基本概念。
学习Python编程语言和基本的数学知识,如线性代数、微积分等。
选择学习资源:
可以通过在线平台(如Coursera、edX、Udacity)、书籍(如《深度学习》、《神经网络与深度学习》等)、博客文章等学习深度学习知识。
推荐学习深度学习框架,如TensorFlow、PyTorch等,这些框架能够帮助您更快地实现深度学习模型。
实践项目:
参与一些实践项目,如图像分类、文本生成、目标检测等,通过实际动手操作来加深理解。
可以尝试复现一些经典的深度学习论文,从中学习到最前沿的技术和方法。
参与社区和讨论:
加入深度学习相关的社区和论坛,与其他学习者交流经验、分享学习资源。
关注最新的研究成果和进展,参与相关的讨论会议、研讨会等活动。
持续学习和实践:
深度学习是一个不断发展和演进的领域,需要持续学习和实践才能跟上最新的技术趋势。
参与挑战赛(如Kaggle)或开源项目,锻炼自己的实战能力和问题解决能力。
通过以上步骤,您可以逐步建立起对深度学习的理解和实践能力。记住,深度学习是一门需要不断学习和实践的领域,坚持不懈地提升自己的技能将有助于您在深度学习领域取得成功。祝您顺利入门深度学习!

相关文章:
深度学习知识点全面总结
目录 1.深度学习的一些重要知识点 神经网络: 深度学习模型: 深度学习技术: 深度学习应用: 2.深度学习、机器学习、人工智能 3.用python实现简单神经网络模型 4.用于深度学习显卡推荐排序 5.深度学习如何入门? 掌握基础知识: 选择学习资源&…...
【编写控制手机压测的脚本】
编写一个控制手机压测的脚本可以使用Python语言来实现。以下是一个简单的示例脚本: import subprocess import time# 打开app subprocess.call(["adb", "shell", "am", "start", "-n", "com.example.app/.…...
计算机网络-路由策略与路由控制一
到目前为止我们学习了路由与交换基础,路由协议有静态、RIP、OSPF、IS-IS等,但是根据实际组网需求,往往需要实施一些路由策略对路由信息进行过滤、属性设置等操作,通过对路由的控制,可以影响数据流量转发。 因此我们开始…...
在线3D展示软件三维展示软件推荐哪家?
博维数孪、动动三维和sketchfab的在线网页3D展示软件工具选择哪一比较好? 选择在线3D展示软件时,需要考虑几个关键因素,包括软件的功能、用户界面、价格、社区支持和兼容性等。以上几款软件工具都有各自的优势,具体取决于需求和偏…...
VS Code中PlatformIO IDE的安装并开发Arduino
VS Code中PlatformIO IDE的安装并开发Arduino VS Code的安装 略 PlatformIO IDE的安装 PlatformIO IDE是是什么 PlatformIO IDE 是一个基于开源的跨平台集成开发环境(IDE),专门用于嵌入式系统和物联网(IoT)开发。…...
Java入门——异常
异常的背景 初识异常 我们曾经的代码中已经接触了一些 "异常" 了. 例如: //除以 0 System.out.println(10 / 0); // 执行结果 Exception in thread "main" java.lang.ArithmeticException: / by zero //数组下标越界 int[] arr {1, 2, 3}; System.out.…...
智慧园区:视频系统建设的核心要素与实践路径
一、背景分析 园区作为城市的基本单元,是最重要的人口和产业聚集区。根据行业市场调研,90%以上城市居民工作与生活在园区进行,80%以上的GDP和90%以上的创新在园区内产生,可以说“城市,除了马路都是园区”。 园区形态…...
基于ChatGLM+Langchain离线搭建本地知识库(免费)
目录 简介 服务部署 实现本地知识库 测试 番外 简介 ChatGLM-6B是清华大学发布的一个开源的中英双语对话机器人。基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT…...
MySQL 进阶使用【函数、索引、视图、存储过程、存储函数、触发器】
前言 做数仓开发离不开 SQL ,写了很多 HQL 回头再看 MySQL 才发现,很多东西并不是 HQL 所独创的,而是几乎都来自于关系型数据库通用的 SQL;想到以后需要每天和数仓打交道,那么不管是 MySQL 还是 Oracle ,都…...
SCSS详解
SCSS(Sassy CSS)是Sass 3引入的新语法,完全兼容CSS3,并且继承了Sass的强大功能。与原始的Sass语法不同,SCSS语法使用了和CSS一样的块语法,即使用大括号“{}”将不同的规则分开,使用分号“;”将具…...
Vue 问题集
Q:MaxListenersExceededWarning: Possible EventEmitter memory leak detected. 11 connection listeners added. Use emitter.setMaxListeners() to increase limit A: 可能由多个问题导致,我的是情况1 1. vue.config.js - devServer 代理设置只能添加10个&#…...
Elasticsearch 8.1官网文档梳理 -综述
积累 Elasticsearch 的常用知识,以及日常维护、学习用到的 API。因为相关内容太多,所以根据模块整理成了不同的文章,并在这里做汇总,整个系列的文章都会持续更新 目录 Elasticsearch 8.1官网文档梳理 - 四、Set up Elasticsearc…...
当自身需要使用的 gcc版本 和Linux 默认版本 存在大版本差异时怎样处理
前言 本文档意在说明 当使用者 gcc 版本 和 Linux系统默认的gcc版本 存在 大版本差异 时,怎样处理,能够兼用多个版本 并且对已有 程序影响最小。 问题描述 linux系统默认的gcc版本:7.5.0我们程序需要使用的gcc版本:8.4.0 安装…...
深度学习之卷积神经网络理论基础
深度学习之卷积神经网络理论基础 卷积层的操作(Convolutional layer) 在提出卷积层的概念之前首先引入图像识别的特点 图像识别的特点 特征具有局部性:老虎重要特征“王字”仅出现在头部区域特征可能出现在任何位置下采样图像,…...
控制台的高度可调有哪些重要意义解析
在现代办公环境中,控制台的高度可调性越来越受到重视。它不仅为员工提供了更加舒适的工作环境,还提高了工作效率和生产力。本文将详细探讨控制台高度可调的重要性,并解析其在实际应用中的优势。 个性化适应需求 对于长时间在控制台前工作的用…...
智能招聘?远在天边,近在眼前
2023年曾被称为“史上最卷毕业季”,当年应届高校毕业生高达1158万人。人力资源社会保障部公布的数据显示,即将到来的2024毕业季,全国普通高校毕业生规模预计将达1179万人,同比增加21万人,就业总量压力依然高企。看来&a…...
文字游侠AI丨简直是写作神器,头条爆文一键生成稳定赚米!附渠道和详细教程(只需四步)!
在数字时代的浪潮中,人们不断寻求网络空间中的商机,期望在互联网的浩瀚海洋里捕捉到稳定的财富。随着人工智能技术的突飞猛进,越来越多的AI工具被融入到各行各业,开辟了新天地,带来了创新的盈利模式。 其中,…...
【ES6】简单剖析一下展开运算符 “ ... “
基本用法 let row {id: 1,name: John Doe,age: 30 };let newRow { ...row };console.log(newRow); // 输出: { id: 1, name: John Doe, age: 30 }基本用法就是通过展开运算符,将某个对象中的元素依次展开,然后赋值给新的对象。 但是值得注意的是&…...
java StringUtils类常用方法
StringUtils类是Apache Commons Lang库中提供的一个工具类,用于处理字符串操作。它包含了许多常用的方法,以下是其中一部分常用方法: StringUtils.isEmpty(String str):判断字符串是否为空,如果字符串为null、空字符串…...
科锐国际(计算机类),汤臣倍健,中建三局,宁德时代,途游游戏,得物,蓝禾,顺丰,康冠科技24春招内推
科锐国际(计算机类),汤臣倍健,中建三局,宁德时代,途游游戏,得物,蓝禾,顺丰,康冠科技24春招内推 ①汤臣倍健 【内推岗位】:市场类、营销类、研发类…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
VisualXML全新升级 | 新增数据库编辑功能
VisualXML是一个功能强大的网络总线设计工具,专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑(如DBC、LDF、ARXML、HEX等),并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...
【iOS】 Block再学习
iOS Block再学习 文章目录 iOS Block再学习前言Block的三种类型__ NSGlobalBlock____ NSMallocBlock____ NSStackBlock__小结 Block底层分析Block的结构捕获自由变量捕获全局(静态)变量捕获静态变量__block修饰符forwarding指针 Block的copy时机block作为函数返回值将block赋给…...

