决策树最优属性选择
本文以西瓜数据集为例演示决策树使用信息增益选择最优划分属性的过程

西瓜数据集下载:传送门
首先计算根节点的信息熵:
- 数据集分为好瓜、坏瓜,所以|y|=2
- 根结点包含17个训练样例,其中好瓜共计8个样例,所占比例为8/17
- 坏瓜共计9个样例,所占比例为9/17
将数据带入信息熵公式,即可得到根结点的信息熵:
E n t ( D ) = − ( 8 17 log 2 8 17 + 9 17 log 2 9 17 ) = 0.998 Ent(D)=-\left( \frac{8}{17}\log_2\frac{8}{17}+\frac{9}{17}\log_2\frac{9}{17} \right) =0.998 Ent(D)=−(178log2178+179log2179)=0.998
以属性色泽为例,其对应3个数据子集:
- D1(色泽=青绿),包含{1,4,6,10,13,17}共6个样例,其中好瓜样例为{1,4,6},比例为3/6,坏瓜样例为{10,13,17},比例为3/6。将数据带入信息熵计算公式即可得到该结点的信息熵:1.000
- D2(色泽=乌黑),包含{2,3,7,8,9,15}共6个样例,其中好瓜样例为{2,3,7,8},比例为4/6,坏瓜样例为{9,15},比例为2/6。将数据带入信息熵计算公式即可得到该结点的信息熵:0.918
- D1(色泽=浅白),包含{5,11,12,14,16}共5个样例,其中好瓜样例为{5},比例为1/5,坏瓜样例为{11,12,14,16},比例为4/5。将数据带入信息熵计算公式即可得到该结点的信息熵:0.722
则计算色泽属性的信息增益为:
G a i n ( D , 色泽 ) = E n t ( D ) − ∑ v = 1 3 ∣ D v ∣ ∣ D ∣ E n t ( D ) = 0.998 − ( 6 17 ∗ 1.000 + 6 17 ∗ 0.918 + 5 17 ∗ 0.722 ) = 0.109 Gain(D,色泽)=Ent(D)-\sum_{v=1}^{3}\frac{|D^v|}{|D|}Ent(D) \\ =0.998-\left( \frac{6}{17} * 1.000+\frac{6}{17}*0.918+\frac{5}{17}*0.722 \right) =0.109 Gain(D,色泽)=Ent(D)−v=1∑3∣D∣∣Dv∣Ent(D)=0.998−(176∗1.000+176∗0.918+175∗0.722)=0.109
同样的方法,计算其他属性的信息增益为:
G a i n ( D , 根蒂 ) = 0.143 G a i n ( D , 敲声 ) = 0.141 G a i n ( D , 纹理 ) = 0.381 G a i n ( D , 脐部 ) = 0.289 G a i n ( D , 触感 ) = 0.006 Gain(D,根蒂)=0.143 \\ Gain(D,敲声)=0.141 \\ Gain(D,纹理)=0.381 \\ Gain(D,脐部)=0.289 \\ Gain(D,触感)=0.006 \\ Gain(D,根蒂)=0.143Gain(D,敲声)=0.141Gain(D,纹理)=0.381Gain(D,脐部)=0.289Gain(D,触感)=0.006
对比不同属性,我们发现纹理属性的信息增益最大,因此,纹理属性被选为划分属性:清晰{1,2,3,4,5,6,8,10,15}、稍糊{7,9,13,14,17}、模糊{11,12,16}
下一步,我们再看纹理=清晰的节点分支,该节点包含的样例集合D1中有编号为{1,2,3,4,5,6,8,10,15}共计9个样例,此时可用属性集合为{色泽,根蒂,敲声,脐部,触感},纹理不会再作为划分属性,我们以同样的方式再计算各属性的信息增益为:
G a i n ( D , 色泽 ) = 0.043 G a i n ( D , 根蒂 ) = 0.458 G a i n ( D , 敲声 ) = 0.331 G a i n ( D , 脐部 ) = 0.458 G a i n ( D , 触感 ) = 0.458 Gain(D,色泽)=0.043 \\ Gain(D,根蒂)=0.458 \\ Gain(D,敲声)=0.331 \\ Gain(D,脐部)=0.458 \\ Gain(D,触感)=0.458 \\ Gain(D,色泽)=0.043Gain(D,根蒂)=0.458Gain(D,敲声)=0.331Gain(D,脐部)=0.458Gain(D,触感)=0.458
从上图可以看出根蒂、脐部、触感3个属性均取得了最大的信息增益,此时可任选其一作为划分属性。同理,对每个分支结点进行类似操作,即可得到最终的决策树
相关文章:
决策树最优属性选择
本文以西瓜数据集为例演示决策树使用信息增益选择最优划分属性的过程 西瓜数据集下载:传送门 首先计算根节点的信息熵: 数据集分为好瓜、坏瓜,所以|y|2根结点包含17个训练样例,其中好瓜共计8个样例,所占比例为8/17坏…...
NER 数据集格式转换
NER 数据集格式 格式一 某些地方的数据和标签拆成两个文件了 sentences.txt 如 何 解 决 足 球 界 长 期 存 在 的 诸 多 矛 盾 , 重 振 昔 日 津 门 足 球 的 雄 风 , 成 为 天 津 足 坛 上 下 内 外 到 处 议 论 的 话 题 。 该 县 一 手 抓 农 业…...
【LinuxC语言】utime函数
文章目录 前言函数原型参数`struct utimbuf`返回值示例代码总结前言 utime函数在C语言中用于更改文件的访问时间(access time, atime)和修改时间(modification time, mtime)。这是一个POSIX标准的函数,常用于更新文件的时间戳,而不必实际修改文件的内容。 函数原型 #in…...
Cannot invoke an object which is possibly ‘undefined‘
这是ts中的错误提示: Cannot invoke an object which is possibly undefined 报错场景: 定义interface接口的时候sayHi方法使用的是可选属性,可以有可以没有, 当在实际方法中调用sayHi方法的时候报错了, 问ÿ…...
C++ 计时器
文章目录 一、简介二、实现代码2.1 windows平台2.2 C标准库 三、实现效果 一、简介 有时候总是会用到一些计时的操作,这里也整理了一些代码,包括C标准库以及window自带的时间计算函数。 二、实现代码 2.1 windows平台 StopWatch.h #ifndef STOP_WATCH_H…...
notepad++ 批量转所有文件编码格式为UTF-8
1、安装notepad及PythonScript_3.0.18.0插件 建议两者都保持默认路径安装x64版本: 阿里云盘分享https://www.alipan.com/s/xVUDpY8v5QL安装好后如下图: 2、new Script,新建脚本,文件名为ConvertEncoding 3、自动打开脚本ÿ…...
正点原子[第二期]Linux之ARM(MX6U)裸机篇学习笔记-16讲 EPIT定时器
前言: 本文是根据哔哩哔哩网站上“正点原子[第二期]Linux之ARM(MX6U)裸机篇”视频的学习笔记,在这里会记录下正点原子 I.MX6ULL 开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了正点原子教学视频和链接中的内容。…...
【只会for循环? 来看下, Nodejs中典型的5种循环方式】
Nodejs中的,除了经典的for循环 , 其实还有几种好用的循环方式, 并有典型的使用场景。下面来一起看下👇🏻 5种循环用法 For Loop:这是最常见的循环方式,适用于你知道循环次数的情况。 for (let i 0; i &…...
Java基础(三)- 多线程、网络通信、单元测试、反射、注解、动态代理
多线程基础 线程:一个程序内部的一条执行流程,只有一条执行流程就是单线程 java.lang.Thread代表线程 主线程退出,子线程存在,进程不会退出 可以使用jconsole查看 创建线程 有多个方法可以创建线程 继承Thread类 优点&#x…...
WordPress建站公司模板免费下载
WordPress建站公司 适合提供WordPress建站服务的公司或个体(个人)工作室使用的WordPress建站公司主题模板。 演示 https://www.jianzhanpress.com/?p545 https://www.wpicu.com/jianzhan/ 下载 链接: https://pan.baidu.com/s/11trlwUJq_lW81R_acq4ilA 提取码: r19i...
金融信贷风控基础知识
一、所谓风控(What && Why) 所谓风控,可以拆解从2个方面看,即 风险和控制 风险(what) 风险 这里狭隘的特指互联网产品中存在的风险点,例如 账户风险 垃圾注册账号账号被泄露盗用 交易支付风险 刷单:为提升卖家店铺人气…...
Web Server项目实战4-服务器编程基本框架和2种高效的事件处理模式
服务器编程基本框架 虽然服务器程序种类繁多,但其基本框架都一样,不同之处在于逻辑处理 模块功能I/O处理单元处理客户连接,读写网络数据逻辑单元业务进程或线程网络存储单元数据库、文件或缓存请求队列各单元之间的通信方式 I/O 处理单元是…...
。。。。。
...
RPC原理技术
RPC原理技术 背景介绍起源组件实现工作原理 背景 本文内容大多基于网上其他参考文章及资料整理后所得,并非原创,目的是为了需要时方便查看。 介绍 RPC,Remote Procedure Call,远程过程调用,允许像调用本地方法一样调…...
开源大模型与闭源大模型:技术哲学的较量
目录 前言一、 开源大模型的优势1. 社区支持与合作1.1 全球协作网络1.2 快速迭代与创新1.3 共享最佳实践 2. 透明性与可信赖性2.1 审计与验证2.2 减少偏见与错误2.3 安全性提升 3. 低成本与易访问性3.1 降低研发成本3.2 易于定制化3.3 教育资源丰富 4. 促进标准化5. 推动技术进…...
buuctf的RSA(二)
1.RSA 知道 flag.enc 和 pub.key,典型的加密、解密 将pub,key 改为pub.txt 打开后发现公钥 在RSA公私钥分解 Exponent、Modulus,Rsa公私钥指数、系数(模数)分解--查错网 进行解密 得到e65537 n8693448229604811919066606200349480058890565…...
idm软件是做什么的 IDM是啥软件 idm软件怎么下载 idm软件怎么下载
一、IDM是啥软件 IDM 是由美国 Tonec 公司开发的 Windows 软件,该软件最初于 2005 年发布。IDM全称Internet Download Manager,是一款Windows平台老牌而功能强大的下载加速器,专注于互联网数据下载。这款软件是一款不错的轻量级下载工具&…...
基于springboot+vue的学生考勤管理系统
开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…...
Java——内部类
1.什么是内部类 在一个类的里面再定义一个类,新定义的这个类就是内部类 举例:在Outer类的里面定义一个Inter类 class Outer{class Inter{} } 在这里Outer叫外部类,Inter叫内部类 内部类的应用场景 定义一个汽车类: 属性…...
不用从头训练,通过知识融合创建强大的统一模型
在自然语言处理(NLP)领域,大型语言模型(LLMs)的开发和训练是一个复杂且成本高昂的过程。数据需求是一个主要问题,因为训练这些模型需要大量的标注数据来保证其准确性和泛化能力;计算资源也是一个…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
