当前位置: 首页 > news >正文

决策树最优属性选择



本文以西瓜数据集为例演示决策树使用信息增益选择最优划分属性的过程

在这里插入图片描述

西瓜数据集下载:传送门

首先计算根节点的信息熵:

  • 数据集分为好瓜、坏瓜,所以|y|=2
  • 根结点包含17个训练样例,其中好瓜共计8个样例,所占比例为8/17
  • 坏瓜共计9个样例,所占比例为9/17

将数据带入信息熵公式,即可得到根结点的信息熵:

E n t ( D ) = − ( 8 17 log ⁡ 2 8 17 + 9 17 log ⁡ 2 9 17 ) = 0.998 Ent(D)=-\left( \frac{8}{17}\log_2\frac{8}{17}+\frac{9}{17}\log_2\frac{9}{17} \right) =0.998 Ent(D)=(178log2178+179log2179)=0.998

以属性色泽为例,其对应3个数据子集:

  • D1(色泽=青绿),包含{1,4,6,10,13,17}共6个样例,其中好瓜样例为{1,4,6},比例为3/6,坏瓜样例为{10,13,17},比例为3/6。将数据带入信息熵计算公式即可得到该结点的信息熵:1.000
  • D2(色泽=乌黑),包含{2,3,7,8,9,15}共6个样例,其中好瓜样例为{2,3,7,8},比例为4/6,坏瓜样例为{9,15},比例为2/6。将数据带入信息熵计算公式即可得到该结点的信息熵:0.918
  • D1(色泽=浅白),包含{5,11,12,14,16}共5个样例,其中好瓜样例为{5},比例为1/5,坏瓜样例为{11,12,14,16},比例为4/5。将数据带入信息熵计算公式即可得到该结点的信息熵:0.722

则计算色泽属性的信息增益为:

G a i n ( D , 色泽 ) = E n t ( D ) − ∑ v = 1 3 ∣ D v ∣ ∣ D ∣ E n t ( D ) = 0.998 − ( 6 17 ∗ 1.000 + 6 17 ∗ 0.918 + 5 17 ∗ 0.722 ) = 0.109 Gain(D,色泽)=Ent(D)-\sum_{v=1}^{3}\frac{|D^v|}{|D|}Ent(D) \\ =0.998-\left( \frac{6}{17} * 1.000+\frac{6}{17}*0.918+\frac{5}{17}*0.722 \right) =0.109 Gain(D,色泽)=Ent(D)v=13DDvEnt(D)=0.998(1761.000+1760.918+1750.722)=0.109

同样的方法,计算其他属性的信息增益为:
G a i n ( D , 根蒂 ) = 0.143 G a i n ( D , 敲声 ) = 0.141 G a i n ( D , 纹理 ) = 0.381 G a i n ( D , 脐部 ) = 0.289 G a i n ( D , 触感 ) = 0.006 Gain(D,根蒂)=0.143 \\ Gain(D,敲声)=0.141 \\ Gain(D,纹理)=0.381 \\ Gain(D,脐部)=0.289 \\ Gain(D,触感)=0.006 \\ Gain(D,根蒂)=0.143Gain(D,敲声)=0.141Gain(D,纹理)=0.381Gain(D,脐部)=0.289Gain(D,触感)=0.006

对比不同属性,我们发现纹理属性的信息增益最大,因此,纹理属性被选为划分属性:清晰{1,2,3,4,5,6,8,10,15}、稍糊{7,9,13,14,17}、模糊{11,12,16}

下一步,我们再看纹理=清晰的节点分支,该节点包含的样例集合D1中有编号为{1,2,3,4,5,6,8,10,15}共计9个样例,此时可用属性集合为{色泽,根蒂,敲声,脐部,触感},纹理不会再作为划分属性,我们以同样的方式再计算各属性的信息增益为:

G a i n ( D , 色泽 ) = 0.043 G a i n ( D , 根蒂 ) = 0.458 G a i n ( D , 敲声 ) = 0.331 G a i n ( D , 脐部 ) = 0.458 G a i n ( D , 触感 ) = 0.458 Gain(D,色泽)=0.043 \\ Gain(D,根蒂)=0.458 \\ Gain(D,敲声)=0.331 \\ Gain(D,脐部)=0.458 \\ Gain(D,触感)=0.458 \\ Gain(D,色泽)=0.043Gain(D,根蒂)=0.458Gain(D,敲声)=0.331Gain(D,脐部)=0.458Gain(D,触感)=0.458

从上图可以看出根蒂、脐部、触感3个属性均取得了最大的信息增益,此时可任选其一作为划分属性。同理,对每个分支结点进行类似操作,即可得到最终的决策树


相关文章:

决策树最优属性选择

本文以西瓜数据集为例演示决策树使用信息增益选择最优划分属性的过程 西瓜数据集下载:传送门 首先计算根节点的信息熵: 数据集分为好瓜、坏瓜,所以|y|2根结点包含17个训练样例,其中好瓜共计8个样例,所占比例为8/17坏…...

NER 数据集格式转换

NER 数据集格式 格式一 某些地方的数据和标签拆成两个文件了 sentences.txt 如 何 解 决 足 球 界 长 期 存 在 的 诸 多 矛 盾 , 重 振 昔 日 津 门 足 球 的 雄 风 , 成 为 天 津 足 坛 上 下 内 外 到 处 议 论 的 话 题 。 该 县 一 手 抓 农 业…...

【LinuxC语言】utime函数

文章目录 前言函数原型参数`struct utimbuf`返回值示例代码总结前言 utime函数在C语言中用于更改文件的访问时间(access time, atime)和修改时间(modification time, mtime)。这是一个POSIX标准的函数,常用于更新文件的时间戳,而不必实际修改文件的内容。 函数原型 #in…...

Cannot invoke an object which is possibly ‘undefined‘

这是ts中的错误提示: Cannot invoke an object which is possibly undefined 报错场景: 定义interface接口的时候sayHi方法使用的是可选属性,可以有可以没有, 当在实际方法中调用sayHi方法的时候报错了, 问&#xff…...

C++ 计时器

文章目录 一、简介二、实现代码2.1 windows平台2.2 C标准库 三、实现效果 一、简介 有时候总是会用到一些计时的操作,这里也整理了一些代码,包括C标准库以及window自带的时间计算函数。 二、实现代码 2.1 windows平台 StopWatch.h #ifndef STOP_WATCH_H…...

notepad++ 批量转所有文件编码格式为UTF-8

1、安装notepad及PythonScript_3.0.18.0插件 建议两者都保持默认路径安装x64版本: 阿里云盘分享https://www.alipan.com/s/xVUDpY8v5QL安装好后如下图: 2、new Script,新建脚本,文件名为ConvertEncoding 3、自动打开脚本&#xff…...

正点原子[第二期]Linux之ARM(MX6U)裸机篇学习笔记-16讲 EPIT定时器

前言: 本文是根据哔哩哔哩网站上“正点原子[第二期]Linux之ARM(MX6U)裸机篇”视频的学习笔记,在这里会记录下正点原子 I.MX6ULL 开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了正点原子教学视频和链接中的内容。…...

【只会for循环? 来看下, Nodejs中典型的5种循环方式】

Nodejs中的,除了经典的for循环 , 其实还有几种好用的循环方式, 并有典型的使用场景。下面来一起看下👇🏻 5种循环用法 For Loop:这是最常见的循环方式,适用于你知道循环次数的情况。 for (let i 0; i &…...

Java基础(三)- 多线程、网络通信、单元测试、反射、注解、动态代理

多线程基础 线程:一个程序内部的一条执行流程,只有一条执行流程就是单线程 java.lang.Thread代表线程 主线程退出,子线程存在,进程不会退出 可以使用jconsole查看 创建线程 有多个方法可以创建线程 继承Thread类 优点&#x…...

WordPress建站公司模板免费下载

WordPress建站公司 适合提供WordPress建站服务的公司或个体(个人)工作室使用的WordPress建站公司主题模板。 演示 https://www.jianzhanpress.com/?p545 https://www.wpicu.com/jianzhan/ 下载 链接: https://pan.baidu.com/s/11trlwUJq_lW81R_acq4ilA 提取码: r19i...

金融信贷风控基础知识

一、所谓风控(What && Why) 所谓风控,可以拆解从2个方面看,即 风险和控制 风险(what) 风险 这里狭隘的特指互联网产品中存在的风险点,例如 账户风险 垃圾注册账号账号被泄露盗用 交易支付风险 刷单:为提升卖家店铺人气…...

Web Server项目实战4-服务器编程基本框架和2种高效的事件处理模式

服务器编程基本框架 虽然服务器程序种类繁多,但其基本框架都一样,不同之处在于逻辑处理 模块功能I/O处理单元处理客户连接,读写网络数据逻辑单元业务进程或线程网络存储单元数据库、文件或缓存请求队列各单元之间的通信方式 I/O 处理单元是…...

。。。。。

...

RPC原理技术

RPC原理技术 背景介绍起源组件实现工作原理 背景 本文内容大多基于网上其他参考文章及资料整理后所得,并非原创,目的是为了需要时方便查看。 介绍 RPC,Remote Procedure Call,远程过程调用,允许像调用本地方法一样调…...

开源大模型与闭源大模型:技术哲学的较量

目录 前言一、 开源大模型的优势1. 社区支持与合作1.1 全球协作网络1.2 快速迭代与创新1.3 共享最佳实践 2. 透明性与可信赖性2.1 审计与验证2.2 减少偏见与错误2.3 安全性提升 3. 低成本与易访问性3.1 降低研发成本3.2 易于定制化3.3 教育资源丰富 4. 促进标准化5. 推动技术进…...

buuctf的RSA(二)

1.RSA 知道 flag.enc 和 pub.key,典型的加密、解密 将pub,key 改为pub.txt 打开后发现公钥 在RSA公私钥分解 Exponent、Modulus,Rsa公私钥指数、系数(模数)分解--查错网 进行解密 得到e65537 n8693448229604811919066606200349480058890565…...

idm软件是做什么的 IDM是啥软件 idm软件怎么下载 idm软件怎么下载

一、IDM是啥软件 IDM 是由美国 Tonec 公司开发的 Windows 软件,该软件最初于 2005 年发布。IDM全称Internet Download Manager,是一款Windows平台老牌而功能强大的下载加速器,专注于互联网数据下载。这款软件是一款不错的轻量级下载工具&…...

基于springboot+vue的学生考勤管理系统

开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…...

Java——内部类

1.什么是内部类 在一个类的里面再定义一个类,新定义的这个类就是内部类 举例:在Outer类的里面定义一个Inter类 class Outer{class Inter{} } 在这里Outer叫外部类,Inter叫内部类 内部类的应用场景 定义一个汽车类: 属性&#xf…...

不用从头训练,通过知识融合创建强大的统一模型

在自然语言处理(NLP)领域,大型语言模型(LLMs)的开发和训练是一个复杂且成本高昂的过程。数据需求是一个主要问题,因为训练这些模型需要大量的标注数据来保证其准确性和泛化能力;计算资源也是一个…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...

django filter 统计数量 按属性去重

在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...