Python面试宝典:文件读写和上下文管理器以及输入输出流面试题(1000加python面试题助你轻松捕获大厂Offer)
Python面试宝典:1000加python面试题助你轻松捕获大厂Offer【第一部分:Python基础:第八章:文件操作和输入输出:第一节:文件读写和上下文管理器以及输入输出流】
- 第八章:文件操作和输入输出
- 第一节:文件读写和上下文管理器以及输入输出流
- 1.1、文件读写基本操作
- 1.1.1、打开文件
- 1.1.2、读取文件
- 1.1.3、写入文件
- 1.1.4、关闭文件
- 1.2、上下文管理器和`with`语句
- 1.3、输入输出流
- 1.4、python中关于文件读写和上下文管理器以及输入输出流相关的面试题
- 面试题1
- 面试题2
- 面试题3</
相关文章:
Python面试宝典:文件读写和上下文管理器以及输入输出流面试题(1000加python面试题助你轻松捕获大厂Offer)
Python面试宝典:1000加python面试题助你轻松捕获大厂Offer【第一部分:Python基础:第八章:文件操作和输入输出:第一节:文件读写和上下文管理器以及输入输出流】 第八章:文件操作和输入输出第一节:文件读写和上下文管理器以及输入输出流1.1、文件读写基本操作1.1.1、打开…...

Spring Boot | Spring Boot 实现 “记住我“ 功能
目录: 一、SpringBoot 中 自定义 "用户授权管理" ( 总体内容介绍 )二、实现 "记住我" 功能 ( 通过 "HttpSecurity类" 的 rememberMe( )方法来实现 "记住我" 功能 ) :2.1 基于 "简单加密 Token" 的方式 ( 实现 "记住我&…...

AGM AG32 MCU替代GD32F407/STM32F407的手持示波器方案
一、AG32 MCU替代GD32F407/STM32F407的数字示波器方案 市场上有多款数字迷你示波器,特别小巧,携带非常方便。单通道,标注100Mhz带宽,500MS采样率。 这样高的采样率需要使用高速AD及很高性能的处理器。原方案使用AD9288双通道8bit …...

MongoDB基础入门到深入(八)MongoDB整合SpringBoot、Chang Streams
文章目录 系列文章索引十五、MongoDB整合SpringBoot1、环境准备2、集合操作3、文档操作(1)相关注解(2)创建实体(3)添加文档(4)查询文档(5)更新文档࿰…...

linux下的nfs概述与实验(openEuler22.03)
目录 什么是NFSNFS工作原理NFS常用文件/etc/exports文件/etc/exports格式 /var/lib/nfs/etab文件 NFS常用选项NFS配置方式1. 安装NFS和RPC2. 启动rpcbind和nfs3. 准备目录4. 配置/etc/exports并重启服务5. 连接测试服务端自我测试客户端测试 补充常用命令永久挂载注意 什么是NF…...
影响Oracle数据库打开速度的因素
当Oracle发起一个事务需要更改数据时,如果所涉及的数据块不在BUFFER CACHE中,那么Oracle服务进程首先会将相关数据块从数据文件中读进BUFFER CACHE进行更改(直接路径读除外),更改后的数据块称之为脏块(DIRT…...

dify:开源 LLMOps平台。
单纯笔记: 一、关于 Dify dify/README_CN.md at main langgenius/dify GitHub Dify 是一款开源的大语言模型(LLM)应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以…...

CCF20220601——归一化处理
CCF20220601——归一化处理 代码如下: #include<bits/stdc.h> using namespace std; int main() {int n,a[1000],sum0;scanf("%d",&n);for(int i1;i<n;i){scanf("%d",&a[i]);suma[i];}double aver1.0,b0.0,d1.0;aversum/(n*1…...
用Ai编写一个电机驱动程序
问:帮我写一个步进电机的控制程序,要有包括加减速,以及电机步中断处理函数。 答:编写一个步进电机的控制程序涉及到硬件层面的操作,通常需要依赖特定的硬件平台和相应的驱动程序。以下是一个简化的示例,它展…...

【C++入门】—— C++入门 (下)_内联函数
前言:在了解完前面的C基础内容后,马上我们就要真正不如C的学习了,但在之前让我们最后了解最后一点点C入门知识!来迟的520特别篇! 本篇主要内容: 内联函数 auto关键字 范围for 指针空值nullptr C入门 1. 内联…...
Java数据结构与算法(最小栈)
前言 设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。 实现 MinStack 类: MinStack() 初始化堆栈对象。void push(int val) 将元素val推入堆栈。void pop() 删除堆栈顶部的元素。int top() 获取堆栈顶部的元素。i…...

7 Series FPGAs Integrated Block for PCI Express IP核 Advanced模式配置详解(三)
1 TL Settings Transaction Layer (TL)设置只在Advanced模式下有效。 Endpoint: Unlock and PME_Turn_Off Messages: 与端点的电源管理相关,允许发送解锁和电源管理事件关闭消息。 Root Port: Error Messages: Error Correctable(错误可纠正)…...
k8s 部署mqtt简介
在Kubernetes(K8s)中部署MQTT(Message Queuing Telemetry Transport)服务通常涉及以下几个步骤: 选择MQTT Broker MQTT Broker是MQTT消息传递的中间件。流行的MQTT Broker包括Mosquitto, HiveMQ, EMQ X等。你需要选择一…...
汇凯金业:量化交易中常用的数学模型有哪些
量化交易中运用了多种数学模型来识别市场的潜在机会和建立交易策略。以下是一些在量化交易中常用的数学模型: 1. 时间序列分析模型 时间序列分析是研究和预测数据点随时间顺序变化趋势的方法。在量化交易中,常用的时间序列模型包括: 自回归&a…...

局部直方图均衡化去雾算法
目录 1. 引言 2. 算法流程 3. 代码 4. 去雾效果 1. 引言 局部直方图算法是一种基于块的图像去雾方法,它将图像分割为若干个块,并在每个块内计算块的局部直方图。通过对各个块的直方图进行分析和处理,该算法能够更好地适应图像中不同区域的…...

selenium环境安装和web自动化基础
webUI自动化背景 因为web页面经常会变化,所以UI自动化测试的维护成本很高。不如接口的适用面广,所以大部分公司会做接口自动化测试,但是未必会做UI自动化测试; UI自动化测试要做也是覆盖冒烟测试,不会到很高的覆盖率&a…...

【UE Websocket】“WebSocket Server”插件使用记录
1. 在商城中下载“WebSocket Server”插件 该插件具有如下节点,基本可以满足WebSocket服务端的所有需求 2. 如果想创建一个基本的服务端,我们可以新建一个actor蓝图,添加如下节点 3. UE运行后,我们可以使用在线的websocket测试助手…...
spring中依赖注入(DI)是什么?
好的,让我以尽可能通俗易懂的方式来解释什么是依赖注入(DI,Dependency Injection)。 假设你正在制作一款游戏,游戏中有个角色需要使用武器。在没有依赖注入的情况下,这个角色可能需要自己创建一个武器。这…...

paligemma、Grounding-DINO-1.5简单无需标注无需训练直接可以使用的VLM图像到文本模型
1、paligemma 参考:https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md 模型架构: 文本与图像特征一起送入大模型 在线体验网址: https://huggingface.co/spaces/big-vision/paligemma 通过文字prompt既可与图片对话…...

FreeRTOS学习——FreeRTOS队列(下)之队列创建
本篇文章记录我学习FreeRTOS队列创建的知识。主要分享队列创建需要使用的初始化函数、队列复位函数。 需要进一步了解FreeRTOS队列的相关知识,读者可以参考以下文章: FreeRTOS学习——FreeRTOS队列(上)_freertos 单元素队列-CSDN博…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...

负载均衡器》》LVS、Nginx、HAproxy 区别
虚拟主机 先4,后7...

高端性能封装正在突破性能壁垒,其芯片集成技术助力人工智能革命。
2024 年,高端封装市场规模为 80 亿美元,预计到 2030 年将超过 280 亿美元,2024-2030 年复合年增长率为 23%。 细分到各个终端市场,最大的高端性能封装市场是“电信和基础设施”,2024 年该市场创造了超过 67% 的收入。…...

EasyRTC音视频实时通话功能在WebRTC与智能硬件整合中的应用与优势
一、WebRTC与智能硬件整合趋势 随着物联网和实时通信需求的爆发式增长,WebRTC作为开源实时通信技术,为浏览器与移动应用提供免插件的音视频通信能力,在智能硬件领域的融合应用已成必然趋势。智能硬件不再局限于单一功能,对实时…...