正则项学习笔记
目录
1. L2 正则化 岭回归
1.1 L2 norm计算例子
2. L1 正则化
3. 弹性网正则化
4. Dropout
1. L2 正则化 岭回归
在 PyTorch 中,L2 正则化通常通过设置优化器的 weight_decay 参数实现。以下是一个简单的例子:
介绍博文:
正则化(1):通俗易懂的岭回归
import torch
import torch.nn as nn
import torch.optim as optim# 定义一个简单的模型
class Model(nn.Module):def __init__(self):super(Model, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 2)def forward(self, x):x = torch.relu(self.fc1(x))x = self.fc2(x)return x# 创建模型和数据
model = Model()
inputs = torch.randn(1, 10)
targets = torch.tensor([1, 0], dtype=torch.float32)# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-5) # L2 正则化# 训练模型
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
1.1 L2 norm计算例子
import numpy as np# 假设一些模型权重
weights = np.array([1.5, -2.3, 0.7, -0.9])# 计算 L2 范数(即所有权重平方的平方根)
l2_norm = np.sqrt(np.sum(np.square(weights)))# 计算 L2 正则化项,这里使用一个正则化参数 lambda
lambda_param = 0.01
l2_regularization = lambda_param * 0.5 * np.sum(np.square(weights))print("L2 Norm of weights:", l2_norm)
print("L2 Regularization term:", l2_regularization)
2. L1 正则化
在 PyTorch 中,实现 L1 正则化需要自定义损失函数,包括权重的 L1 范数:
# 计算 L1 正则化损失
def l1_penalty(model):l1_norm = sum(p.abs().sum() for p in model.parameters())return l1_norm# 添加 L1 正则化到总损失
lambda1 = 0.01
l1_loss = l1_penalty(model)
total_loss = loss + lambda1 * l1_loss
3. 弹性网正则化
弹性网正则化结合了 L1 和 L2 正则化:
lambda1 = 0.01
lambda2 = 0.01l1_loss = l1_penalty(model)
l2_loss = sum(p.pow(2.0).sum() for p in model.parameters())elastic_net_loss = lambda1 * l1_loss + lambda2 * l2_loss
total_loss = loss + elastic_net_loss
4. Dropout
Dropout 是一种在训练过程中随机丢弃网络中一部分神经元的方法:
class DropoutModel(nn.Module):def __init__(self):super(DropoutModel, self).__init__()self.fc1 = nn.Linear(10, 5)self.dropout = nn.Dropout(0.2)self.fc2 = nn.Linear(5, 2)def forward(self, x):x = torch.relu(self.fc1(x))x = self.dropout(x)x = self.fc2(x)return x# 使用 DropoutModel 替代原始模型
model = DropoutModel()
相关文章:
正则项学习笔记
目录 1. L2 正则化 岭回归 1.1 L2 norm计算例子 2. L1 正则化 3. 弹性网正则化 4. Dropout 1. L2 正则化 岭回归 在 PyTorch 中,L2 正则化通常通过设置优化器的 weight_decay 参数实现。以下是一个简单的例子: 介绍博文: 正则化(1)&a…...
Django自定义模板标签与过滤器
title: Django自定义模板标签与过滤器 date: 2024/5/17 18:00:02 updated: 2024/5/17 18:00:02 categories: 后端开发 tags: Django模版自定义标签过滤器开发模板语法Python后端前端集成Web组件 Django模板系统基础 1. Django模板语言概述 Django模板语言(DTL&…...
k8s集群安装后CoreDNS 启动报错plugin/forward: no nameservers found
安装k8s过程中遇到的问题: 基本信息 系统版本:ubuntu 22.04 故障现象: coredns 报错:plugin/forward: no nameservers found 故障排查: #检查coredns的配置,发现有一条转发到/etc/resolv.conf的配置…...
AI图片过拟合如何处理?答案就在其中!
遇到难题不要怕!厚德提问大佬答! 厚德提问大佬答8 你是否对AI绘画感兴趣却无从下手?是否有很多疑问却苦于没有大佬解答带你飞?从此刻开始这些问题都将迎刃而解!你感兴趣的话题,厚德云替你问,你解…...
0基础如何进入IT行业
目录 引言 一、了解IT行业 1.1 IT行业概述 1.2 IT行业的职业前景 二、选择适合的学习路径 2.1 自学 2.2 参加培训班 2.3 高等教育 三、学习基础技能 3.1 编程语言 3.2 数据结构与算法 3.3 计算机基础知识 四、实践与项目经验 4.1 开源项目 4.2 个人项目 4.3 实习…...
一键批量提取TXT文档前N行,高效处理海量文本数据,省时省力新方案!
大量的文本信息充斥着我们的工作与生活。无论是研究资料、项目文档还是市场报告,TXT文本文档都是我们获取和整理信息的重要来源。然而,面对成百上千个TXT文档,如何快速提取所需的关键信息,提高工作效率,成为了许多人头…...
Java-常见面试题收集(十六)
二十五 RocketMQ 1 消息队列介绍 消息队列,简称 MQ(Message Queue),它其实就指消息中间件,当前业界比较流行的开源消息中间件包括:RabbitMQ、RocketMQ、Kafka。(一个使用队列来通信的组件&…...
vue从入门到精通(四):MVVM模型
一,MVVM MVVM(Model–view–viewmodel)是一种软件架构模式。MVVM有助于将图形用户界面的开发与业务逻辑或后端逻辑(数据模型)的开发分离开来。详见MVVM 二,Vue中的MVVM Vue虽然没有完全遵循 MVVM 模型,但是 Vue 的设…...
提供一个c# winform的多语言框架源码,采用json格式作为语言包,使用简单易于管理加载且不卡UI,支持“语言分级”管理
提供一个c# winform的多语言框架源码,采用json格式作为语言包,不使用resx资源,当然本质一样的,你也可以改为resx 一、先看下测试界面 演示了基本的功能:切换语言,如何加载语言,如何分级加载语…...
Docker常见命令
创建并运行容器 例子:docker安装运行mysql docker run -d \ --name mysql \ -p 3306:3306 \ -e TZAsia/Shanghai \ -e MYSQL_ROOT_PASSWORDroot \ -v /root/data/mysql/data:/var/lib/mysql \ -v /root/data/mysql/init:/docker-entrypoint-initdb.d \ -v /root/d…...
中科大6系+先研院+中南大学电子信息学院2023年保研经历
中科大6系 英语口语问题: What’s your research plan?Please introduce your project. 专业课问题: BPSK和QPSK每个字母代表的含义?QAM的星座图是什么样的?根据什么准则画成那个样子? 中科大先研院 …...
分布式理论--BASE
目录 是什么BASE 与 CAP,ACID 的区别BASE 和 Paxos 类共识算法的区别相关问题 是什么 BASE 理论是对 CAP 理论的进一步扩展主要强调在分布式系统中,为了获得更高的可用性和性能,可以放宽对一致性的要求,是对 CAP 中 AP 方案的一个…...
【计算机网络原理】浅谈应用层协议的自定义和传输层UDP协议的总结
˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如…...
正则表达式及其应用
demo1: package 正则表达式;public class demo1 {public static void main(String[] args) {//只能是a b cSystem.out.println("a".matches("[abc]"));//true//前后校验字符个数需要一致System.out.println("ab".matches("[abc]"));/…...
VUE面试题(3)--vue常见面试题
1.vue优点 低耦合。视图(View)可以独立于Model变化和修改,一个ViewModel可以绑定到不同的"View"上,当View变化的时候Model可以不变,当Model变化的时候View也可以不变。 可重用性。你可以把一些视图逻辑放在一个ViewModel里面,让很多view重用这段视图逻辑。 …...
2024.05.24|生信早报【AI测试版】
植物再生领域重大突破 山农大团队发现植物“再生指挥官”REF1:中国科学院院士种康高度评价,认为这一发现对细胞分化与再生领域的基础科学研究和生物技术应用具有重大意义。 生物医药专业园区建设\n- 卫光生命科学园聚焦合成生物学、脑科学:…...
计算机毕业设计 | springboot药品库存追踪与管理系统 药店管理(附源码)
1,绪论 1.1 背景调研 如今药品调价频繁,且品种繁多,增加了药品销售定价的难度。药品来货验收登记中的审查有效期环节容易出错,错收过期或有效期不足的药品。 手工模式下的药品库存难以及时掌握,虽然采取了每日进行缺…...
Flink 对接 Hudi 查询数据,java代码编写
1.pom.xml文件需要引入下面包 <properties><flink.version>1.15.4</flink.version><hudi.version>0.13.1</hudi.version></properties><dependencies><dependency><groupId>org.apache.flink</groupId><artifa…...
计算机操作系统总结(1)
1操作系统的概念(定义)功能和目标 (1)什么是操作系统? (2)操作系统的功能和目标—作为系统资源的管理者 (3)操作系统的功能和目标—向上层提供方便易用的服务 (4)操作系…...
HTML5好看的通用网站模板源码
文章目录 1.设计来源1.1 主界面1.2 模板菜单1 界面1.3 模板菜单2 界面1.4 模板菜单3 界面1.5 下拉菜单1 界面1.6 下拉菜单2 界面1.7 模板菜单4 界面1.8 模板菜单5 界面1.9 界面底部 2.效果和源码2.1 动态效果2.2 源码目录2.3 源代码 源码下载 作者:xcLeigh 文章地址…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...
ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]
报错信息:libc.so.6: cannot open shared object file: No such file or directory: #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...
