当前位置: 首页 > news >正文

LLM实战:当网页爬虫集成gpt3.5

1. 背景

最近本qiang~关注了一个开源项目Scrapegraph-ai,是关于网页爬虫结合LLM的项目,所以想一探究竟,毕竟当下及未来,LLM终将替代以往的方方面面。

这篇文章主要介绍下该项目,并基于此项目实现一个demo页面,页面功能是输入一个待爬取的网页地址以及想要从网页中抽取的内容,最后点击按钮实现网页抓取及解析

2. 模块简介

2.1 Scrapegraph-ai

该项目是一个网页爬虫的python包,使用LLM和直接图逻辑(direct graph logic)来为网页和本地文档(XML, HTML, JSON)创建爬取管道(pipeline)。

2.2 GPT-3.5免费申请,且国内可访问

GPT3.5-Turbo免费申请可以在开源项目GPT_API_free进行访问,其中该项目有免费申请的地址,以及网页插件、桌面应用安装等教程,在日志工作学习中,使用起来非常丝滑~

其次,国内访问gpt3.5可以基于该项目提供的代理: https://api.chatanywhere.tech/v1来实现访问。

3. 实战

3.1 安装第三方包

# 网页开发包,和Gradio类似
pip install streamlit
# 爬虫相关包
pip install playwright
playwright install
playwright install-deps # 安装依赖

3.2 设置gpt3.5代理环境变量

import os
os.environ['OPENAI_API_BASE'] = 'https://api.chatanywhere.tech/v1'
OPEN_API_KEY = 'sk-xxxxx'

3.3 创建网页元素

import streamlit as stst.title('网页爬虫AI agent')
st.caption('该app基于gpt3.5抓取网页信息')url = st.text_input('属于你想抓取的网页地址URL')
user_prompt = st.text_input('输入你想要从该网页获取知识的prompt')

3.4 基于scrapegraph-ai包构建图配置以及创建图逻辑

from scrapegraphai.graphs import SmartScraperGraph# 图配置信息,默认调用gpt3.5,其次embedding模型未设置,但阅读源码后,可以发现默认走的是openai的embedding模型
graph_config = {'llm': {'api_key': OPEN_API_KEY,'model': 'gpt-3.5-turbo','temperature': 0.1}
}# 创建直接图逻辑
smart_scraper_graph = SmartScraperGraph(prompt=user_prompt, # 用户输入的promptsource=url, # 用户输入的urlconfig=graph_config
)# 增加一个按钮进行爬取、解析及页面渲染
if st.button('爬取'):result = smart_scraper_graph.run()st.write(result)

3.5 运行启动

streamlit run scrape_web_openai.py

3.6 底层原理

通过研读SmartScraperGraph源码,底层直接图逻辑的原理如下图所示。分为抓取、解析、RAG、答案生成,并默认以json格式输出

4. 效果

4.1 新闻类

网址:ps://news.sina.com.cn/w/2024-05-20/doc-inavwrxq4965190.shtml

4.2 公众号

https://mp.weixin.qq.com/s/rFYXKiedqmVo5URDxlbHzA

针对一些简单的网页如新闻网页等,可以正常爬取,但响应时间在10s以上,针对一些复杂的页面,如包含鉴权、反爬机制等,可能无法正常爬取。

5. 总结

一句话足矣~

本文主要是通过Scrapegraph-ai集成gpt3.5实现一个简单的网页爬取并解析的demo应用,其中涉及到gpt3.5免费申请,Scrapegraph-ai底层原理简介,demo应用源码等。

之后会写一篇关于Qwen7B和BGE的相似度模型,与Scrapegraph-ai集成的demo应用,敬请期待 ~

6. 参考

1. Scrapegraph-ai: https://github.com/VinciGit00/Scrapegraph-ai

2. GPT_API_free: https://github.com/chatanywhere/GPT_API_free


相关文章:

LLM实战:当网页爬虫集成gpt3.5

1. 背景 最近本qiang~关注了一个开源项目Scrapegraph-ai,是关于网页爬虫结合LLM的项目,所以想一探究竟,毕竟当下及未来,LLM终将替代以往的方方面面。 这篇文章主要介绍下该项目,并基于此项目实现一个demo页面&#x…...

Flutter底部导航栏和顶部Tab切换完整代码

题记 —— 执剑天涯,从你的点滴积累开始,所及之处,必精益求精,即是折腾每一天。 目前市场上绝大部分App的布局结构基本统一:底部导航顶部导航,底部导航页里嵌套顶部导航栏,顶部导航页里嵌套图文…...

Jupyter 使用手册: 探索交互式计算的无限可能

什么是 Jupyter? Jupyter 是一个开源的 Web 应用程序,可用于创建和共享包含实时代码、可视化和叙述性文本的文档。它最初是作为 IPython 项目的一部分开发的,后来发展成为支持多种编程语言的交互式计算环境。 应用场景 作为一个开源的交互式计算环境,Jupyter 在以下几个领域…...

IP地址显示“不安全”怎么办|已解决

解决IP地址显示“不安全”的问题,通常需要确保网站或服务使用HTTPS协议进行加密通信,可以通过部署SSL证书来解决,以下是具体的解决步骤: 1 申请IP地址SSL证书:网站管理员应向证书颁发机构(CA)申…...

国内安全实用的图纸透明加密软件厂家,靠谱的透明加密软件供应商--安秉信息

设计类图纸安全已经成为企业需要注意的问题,在当前互联网设计行业、汽车制造设计、机械制造行业等相关企业都需要对企业内部图纸的保护需求,现在在互联网中,企业数据泄露的事情已经层出不穷,企业对核心图纸的数据安全工作需要重点…...

【kubernetes】探索k8s集群中kubectl的陈述式资源管理

目录 一、k8s集群资源管理方式分类 1.1陈述式资源管理方式:增删查比较方便,但是改非常不方便 1.2声明式资源管理方式:yaml文件管理 二、陈述式资源管理方法 2.1查看版本信息 2.2查看资源对象简写 2.3配置kubectl自动补全 2.4node节点…...

VUE 创建组件常见的几种方式

在 Vue.js 中,组件的创建和使用通常遵循以下三种方法: 1. 全局组件 全局组件是通过 Vue.component() 方法创建的,注册后的组件可以在任何新创建的 Vue 实例(包括根实例)的模板中使用。 Vue.component(my-component,…...

华为OBS命令行简单使用

华为OBS(Object Storage Service)是一种云存储服务,提供了高可靠、高性能、安全的数据存储能力。通过使用OBS的命令行工具obsutil,用户可以方便地进行文件上传、下载、删除等操作,而无需依赖图形界面。下面&#xff0c…...

避免超卖!深入解析高并发分布式锁架构

1.引入并发控制的必要性 并发控制是一切分布式系统设计的基石,确保数据一致性、系统稳定性和最终的用户体验。要理解为什么需要并发控制,就必须先探讨并发对系统可能造成的问题。 1.1. 理解并发问题 多线程和分布式环境中,无数的进程和线程…...

latent diffusion 原理+代码

latent diffusion - Github 以下代码来自 作者: 李宝璐 链接: https://libaolu312.github.io/2023/11/27/Latent-Diffusion-Models-原理和代码/ 版权声明: 本博客所有文章除特别声明外,均采用 MIT 许可协议。转载请注明出处&…...

Unity开发——好用的数值概率公式

1、血量、伤害两个因素作用,击杀目标 正常状态下:hp - attackValue; 特殊状态下:attackValue *2; //伤害翻倍 如飞机/坦克大战中,击杀对方;受到伤害时,装备道具磨损失效; public int…...

微信小程序的自定义组件

一、创建自定义组件 (1)定义: 把页面重复的代码部分封装成为一个自定义组件,以便在不同的页面中重复使用,有助于代码的维护。 (2)组成: 自定义组件的组成:json文件&a…...

【算法刷题day57】Leetcode:739. 每日温度、496.下一个更大元素 I

文章目录 Leetcode 739. 每日温度解题思路代码总结 Leetcode 496.下一个更大元素 I解题思路代码总结 草稿图网站 java的Deque Leetcode 739. 每日温度 题目:739. 每日温度 解析:代码随想录解析 解题思路 维护一个单调栈,当新元素大于栈顶&a…...

【EXCEL_VBA_实战】两组数据比对是否一致(字符串数组)

工作背景:比对两组数据是否一致(位置非一一对应) 思路构建:两组数据转换为两组字符串数组,比对所包含元素是否相同 问题点:A数组的第一个元素不一定与B数组的第一个元素对应,此时无法通过公式…...

寻找峰值 ---- 二分查找

题目链接 题目: 分析: 因为题目中要找的是任意一个峰值即可, 所以和<山脉数组的峰值索引>这道题差不多因为峰值左右都小于峰值, 所以具有"二段性", 可以使用二分查找算法如果nums[mid] < nums[mid 1], mid一定不是峰值, 所以left mid 1如果nums[mid] &…...

C语言--输入一个整数代表秒数,将这个数转化为对应的小时数、分钟数、和秒数

#include <stdio.h>int main() {int h,m,s;scanf("%d",&s);ms/60;//计算分钟数ss%60;//剩余的秒数hm/60;//计算小时数mm%60;//剩余的分钟数printf("%d %d %d\n",h,m,s); } //先将分钟数求出&#xff0c;再将多出的秒求出作为最后的打印的s //再用…...

二分搜索技术

非递归算法; #include<iostream> using namespace std; int BinarySearch(int a[],int x,int n) {int right0,leftn-1;while(right<left){int mid(rightleft)/2;if(x<a[mid])leftmid-1;else if(x>a[mid])rightmid1;elsereturn mid;}return -1; } int main() {i…...

docker容器安装nexus3以及nexus3备份迁移仓库数据

一、安装步骤 1.搜索nexus3镜像 docker search nexus3 2.拉取镜像 docker pull sonatype/nexus3或者指定版本 docker pull sonatype/nexus3:3.68.0 3.查看拉取的镜像 docker images | grep "nexus3" 4.启动nexus服务 直接启动 docker run -d --name nexus3 -…...

无线领夹麦克风哪个品牌音质最好,揭秘无线领夹麦哪个牌子好用

​随着社交媒体和内容创作的兴起&#xff0c;清晰可靠的音频捕捉已成为打造高品质作品的关键要素。无线领夹麦克风因其轻巧设计和用户友好的接口而受到青睐&#xff0c;它能够确保你的声音在任何环境下都能被完美捕捉。经过精心测试和对比&#xff0c;以下几款无线领夹麦克风是…...

pcd点云江湖之处处碰壁:点云文件pcd加载02

江湖好汉&#xff0c;休走&#xff0c;废了半天力气把threejs自带的代码搬迁到自己项目中了&#xff0c;高高兴兴给领导看。领导一句话&#xff0c;顿时无奈&#xff1a;领导曰&#xff1a;点云单色太丑&#xff0c;能不能按照分类展示&#xff1f; 一句话难道英雄好汉&#xf…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...