当前位置: 首页 > news >正文

详细介绍一下Votenet的工作原理及流程

Votenet是一种基于深度学习的三维目标检测和实例分割方法,其工作原理主要包括两个步骤:候选框生成和目标分类与分割。

1.候选框生成: 首先,Votenet通过将三维点云数据转化为连续的坐标网格,将三维目标检测问题转化为二维图像检测问题。然后,使用一个基于PointNet++网络的二维候选框生成器,对坐标网格进行特征学习和采样操作,得到候选框的表示。

2.目标分类与分割: 对生成的候选框进行目标分类与分割。为了处理不同形状和尺度的目标,Votenet引入了一个基于点集的投票过程。首先,使用基于PointNet++网络的特征学习模块提取候选框内的特征。然后,通过计算每个点相对于候选框中心的相对位置,将其映射到一个球面坐标系内。接下来,通过基于投票的分组算法,将具有相似球面坐标的点分到同一个目标类别中。最后,使用点集分割模块对每个目标类别进行实例分割,以获取目标的精确边界。

整个流程如下:

  1. 输入原始的三维点云数据。
  2. 将三维点云数据转化为连续的二维坐标网格。
  3. 使用二维候选框生成器对坐标网格进行特征学习和采样,得到候选框的表示。
  4. 对生成的候选框进行目标分类和分割。
  5. 使用投票过程将具有相似球面坐标的点分到同一个目标类别中。
  6. 使用点集分割模块对每个目标类别进行实例分割,获取目标的精确边界。
  7. 输出检测到的三维目标及其对应的实例分割结果。

Votenet的工作原理和流程有效地利用了深度学习方法对三维点云数据进行处理,实现了高效准确的三维目标检测和实例分割。

相关文章:

详细介绍一下Votenet的工作原理及流程

Votenet是一种基于深度学习的三维目标检测和实例分割方法,其工作原理主要包括两个步骤:候选框生成和目标分类与分割。 1.候选框生成: 首先,Votenet通过将三维点云数据转化为连续的坐标网格,将三维目标检测问题转化为二…...

使用Autofit.js和React实现自适应布局

1. 什么是Autofit.js? Autofit.js是一个用于自适应网页布局的JavaScript库,它可以根据元素的尺寸和屏幕的大小,自动调整布局和排列方式,以适应不同的设备和分辨率。它提供了简单易用的API,可以帮助我们轻松实现各种自…...

Kafka之【存储消息】

Kafka之【存储消息】...

鸿蒙开发配置官方地图

一共需要配置 p12 p7b cer csr 四个文件 p12文件配置 注意创建文件名必须是.p12 到AGC创建项目 AppGallery Connect 添加自己的项目名称 我没有开启 暂时不需要 看个人需求 下载刚创建的cer证书 回到我的项目中 点击刚创建的项目 点击这里 四个文件齐全了 "metadata&qu…...

《天道》丁元英格律诗商业案例完整拆解(上)

目录 公司启动缘由 我们开公司也好、做任何其他事请也罢。 1997 年 3 月: 北京摆摊、租店面、仓库: 1997 年 4 月前: 向斯雷克音响店下订货单; 1997 年 6 月: 格林、伦敦、巴黎三个城市当托; 1998 …...

2024年山东省安全员C证证模拟考试题库及山东省安全员C证理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年山东省安全员C证证模拟考试题库及山东省安全员C证理论考试试题是由安全生产模拟考试一点通提供,山东省安全员C证证模拟考试题库是根据山东省安全员C证最新版教材,山东省安全员C证大纲整理…...

微软开源多模态大模型Phi-3-vision,微调实战来了

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。 针对大模型& AIGC 技术趋势、大模型& AIGC 落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了…...

架构二。。

1、CAP 只能3选2 1)一致性(Consistency) 客户每次读都是返回最新的写操作结果 2)可用性(Availability) 非故障节点在合理的时间内返回合理的响应 3)分区容忍性(Partition Tolerance…...

《Google 软件工程》读书笔记

1. 写在前面 在图书馆瞎逛,偶然瞄见一本《Google 软件工程》Titus Winters, Tom Manshreck, Hyrum Wright 著。主要是在这一排的书架上就这本书看着挺新的(不知道为什么有一种喜欢看新书的情节),而且最近被领导老批评,…...

研发机构大数据迁移如何保障敏感数据不泄露

随着云计算和大数据技术的飞速进步,越来越多的企业正试图通过数据迁移来提升IT基础设施的效率,减少成本,并增强业务的灵活性。但是,这一过程并非没有它的挑战,尤其是在数据安全方面。数据在转移过程中可能会遭遇黑客攻…...

【Spring Security系列】权限之旅:SpringSecurity小程序登录深度探索

作者:后端小肥肠 创作不易,未经允许严禁转载。 姊妹篇: 【Spring Security系列】Spring SecurityJWTRedis实现用户认证登录及登出_spring security jwt 退出登录-CSDN博客 1. 前言 欢迎来到【Spring Security系列】!在当今数字化…...

​​​【收录 Hello 算法】第 10 章 搜索

目录 第 10 章 搜索 本章内容 第 10 章 搜索 搜索是一场未知的冒险,我们或许需要走遍神秘空间的每个角落,又或许可以快速锁定目标。 在这场寻觅之旅中,每一次探索都可能得到一个未曾料想的答案。 本章内容 10.1 二分查找10.2 二…...

【MySQL精通之路】SQL优化(1)-查询优化(11)-多范围查询优化

主博客: 【MySQL精通之路】SQL优化(1)-查询优化-CSDN博客 上一篇: 【MySQL精通之路】SQL优化(1)-查询优化(10)-外部联接简化-CSDN博客 下一篇: 当基表很大且未存储在存储引擎的缓存中时,使用辅助索引上的范围扫描读取行可能会…...

Mysql之基本架构

1.Mysql简介 mysql是一种关系型数据库,由表结构来存储数据与数据之间的关系,同时为sql(结构化查询语句)来进行数据操作。 sql语句进行操作又分为几个重要的操作类型 DQL: Data Query Language 数据查询语句 DML: Data Manipulation Language 添加、删…...

Python学习---基于正则表达式的简单爬取电影下载信息案例

一、定义函数获取列表页的内容页地址 get_movie_links() 1、定义列表的地址 2、打开url地址,获取数据 3、解码获取到的数据 4、使用正则得到所有的影片内容也地址 4.1 遍历,取出内容页地址 4.2 拼接内容页地址 4.3 打开内容页地址 4.4 获…...

.DS_store文件

感觉mac里的这个.DS_store文件烦人,老是莫名其妙的出现,然后造成困扰 处理方式如下: import os pic_list os.listdir("./mask_pic/") print(len(pic_list)) # 从文件夹中删掉 if(".DS_Store" in pic_list):print(&quo…...

【webrtc】内置opus解码器的移植

m98 ,不知道是什么版本的opus,之前的交叉编译构建: 【mia】ffmpeg + opus 交叉编译 【mia】ubuntu22.04 : mingw:编译ffmpeg支持opus编解码 看起来是opus是1.3.1 只需要移植libopus和opus的webrtc解码部分即可。 linux构建的windows可运行的opus库 G:\NDDEV\aliply-0.4\C…...

Java注解:讲解Java注解(Annotations)的概念,使用,并展示如何自定义注解,甚至框架级别的使用说明

1. 注解的概念 1.1 介绍Annotation的基础概念 Java注解(Annotation)是Java 5.0及更高版本中引入的一种元数据(meta-data),即数据的数据。它以一种形式附着在代码中,但是对代码的运行不产生直接效果。注解可以用于创建文档、追踪代码依赖性、甚至执行编译期版错误检查等…...

二维矩阵乘法案例

二维矩阵相乘计算原理:第一个矩阵的每一行分别与第二个矩阵的每一列做向量点乘,将所得结果填入新矩阵相应的位置。 例如,给定矩阵 A [ [1, 2 ], [3, 4] ]和 B [ [5, 6 ], [7, 8] ],它们的乘积AB分别为: AB[ 0 ] [ 0…...

selenium安装出错

selenium安装步骤(法1): 安装失败法1 第一次实验,失败 又试了一次,失败 安装法2-失败: ERROR: Could not install packages due to an EnvironmentError: [WinError 5] 拒绝访问。: c:\\programdata\\a…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...

【HTTP三个基础问题】

面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...

倒装芯片凸点成型工艺

UBM(Under Bump Metallization)与Bump(焊球)形成工艺流程。我们可以将整张流程图分为三大阶段来理解: 🔧 一、UBM(Under Bump Metallization)工艺流程(黄色区域&#xff…...

RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上

一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema,不需要复杂的查询,只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 :在几秒钟…...

【题解-洛谷】P10480 可达性统计

题目:P10480 可达性统计 题目描述 给定一张 N N N 个点 M M M 条边的有向无环图,分别统计从每个点出发能够到达的点的数量。 输入格式 第一行两个整数 N , M N,M N,M,接下来 M M M 行每行两个整数 x , y x,y x,y,表示从 …...

初探用uniapp写微信小程序遇到的问题及解决(vue3+ts)

零、关于开发思路 (一)拿到工作任务,先理清楚需求 1.逻辑部分 不放过原型里说的每一句话,有疑惑的部分该问产品/测试/之前的开发就问 2.页面部分(含国际化) 整体看过需要开发页面的原型后,分类一下哪些组件/样式可以复用,直接提取出来使用 (时间充分的前提下,不…...