微软开源多模态大模型Phi-3-vision,微调实战来了
节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。
针对大模型& AIGC 技术趋势、大模型& AIGC 落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。
总结链接如下:
《AIGC 面试宝典》(2024版) 正式发布!
喜欢记得点赞、收藏、关注。更多技术交流&面经学习,可以文末加入我们。
在 Microsoft Build 2024 上,微软持续开源了 Phi-3 系列的新模型们。包括 Phi-3-vision,这是一种将语言和视觉功能结合在一起的多模态模型。
Phi-3家族
Phi-3 系列模型是功能强大、性价比高的小型语言模型 (SLM),在各种语言、推理、编码和数学基准测试中,效果优异。它们使用高质量的训练数据进行训练。
Phi-3 模型系列共有四种模型;每种模型都经过安全保障进行指令调整和开发,以确保可以直接使用,目前均已开源。
-
Phi-3-vision是一个具有语言和视觉功能的 4.2B 参数多模态模型。
-
Phi-3-mini是一个 3.8B 参数语言模型,有两种上下文长度(128K和4K)。
-
Phi-3-small是一个 7B 参数语言模型,有两种上下文长度(128K和8K)。
-
Phi-3-medium是一个 14B 参数语言模型,有两种上下文长度(128K和4K)。
模型种类 | 模型名称 | 模型链接 |
Phi-3-vision | Phi-3-vision-128k-instruct | https://modelscope.cn/models/LLM-Research/Phi-3-vision-128k-instruct |
Phi-3-mini | Phi-3-mini-128k-instruct | https://modelscope.cn/models/LLM-Research/Phi-3-mini-128k-instruct |
Phi-3-mini-4k-instruct | https://modelscope.cn/models/LLM-Research/Phi-3-mini-4k-instruct | |
Phi-3-mini-128k-instruct-onnx | https://modelscope.cn/models/LLM-Research/Phi-3-mini-128k-instruct-onnx | |
Phi-3-mini-4k-instruct-onnx | https://modelscope.cn/models/LLM-Research/Phi-3-mini-4k-instruct-onnx | |
Phi-3-mini-4k-instruct-onnx-web | https://modelscope.cn/models/LLM-Research/Phi-3-mini-4k-instruct-onnx-web | |
Phi-3-small | Phi-3-small-8k-instruct | https://modelscope.cn/models/LLM-Research/Phi-3-small-8k-instruct/summary |
Phi-3-small-8k-instruct-onnx-cuda | https://modelscope.cn/models/LLM-Research/Phi-3-small-8k-instruct-onnx-cuda/summary | |
Phi-3-small-128k-instruct | https://modelscope.cn/models/LLM-Research/Phi-3-small-128k-instruct | |
Phi-3-small-128k-instruct-onnx-cuda | https://modelscope.cn/models/LLM-Research/Phi-3-small-128k-instruct-onnx-cuda | |
Phi-3-medium | Phi-3-medium-128k-instruct | https://modelscope.cn/models/LLM-Research/Phi-3-medium-128k-instruct |
Phi-3-medium-4k-instruct | https://modelscope.cn/models/LLM-Research/Phi-3-medium-4k-instruct | |
Phi-3-medium-4k-onnx-directml | https://modelscope.cn/models/LLM-Research/Phi-3-medium-4k-instruct-onnx-directml | |
Phi-3-medium-4k-onnx-cuda | https://modelscope.cn/models/LLM-Research/Phi-3-medium-4k-instruct-onnx-cuda | |
Phi-3-medium-4k-onnx-cpu | https://modelscope.cn/models/LLM-Research/Phi-3-medium-4k-instruct-onnx-cpu | |
Phi-3-medium-128k-onnx-directml | https://modelscope.cn/models/LLM-Research/Phi-3-medium-128k-instruct-onnx-directml | |
Phi-3-medium-128k-onnx-cuda | https://modelscope.cn/models/LLM-Research/Phi-3-medium-128k-instruct-onnx-cuda | |
Phi-3-medium-128k-onnx-cpu | https://modelscope.cn/models/LLM-Research/Phi-3-medium-128k-instruct-onnx-cpu |
Phi-3 模型已经过优化,可以在各种硬件上运行。ONNX (ONNX Runtime | Phi-3 Small and Medium Models are now optimized with ONNX Runtime and DirectML)格式和 DirectML提供优化过的模型权重,为开发人员提供跨各种设备和平台(包括移动和 Web 部署)的支持。Phi-3 模型还可以作为NVIDIA NIM推理微服务提供,具有标准 API 接口,可以部署在任何地方(Production-Ready APIs That Run Anywhere | NVIDIA),并针对 NVIDIA GPU(https://blogs.nvidia.com/blog/microsoft-build-optimized-ai-developers/)和Intel 加速器(Microsoft Phi-3 GenAI Models with Intel AI Solutions)上的推理进行了优化。
将多模态引入Phi-3
Phi-3-vision 是 Phi-3 系列中的第一个多模态模型,它将文本和图像结合在一起,并具有推理现实世界图像以及从图像中提取和推理文本的能力。它还针对图表和图解理解进行了优化,可用于生成见解和回答问题。Phi-3-vision 以 Phi-3-mini 的语言功能为基础,继续在小型模型中整合强大的语言和图像推理质量。
模型推理
多模态模型推理(Phi-3-vision-128k-instruct)
在魔搭社区的免费GPU算力体验Phi-3多模态模型(单卡A10)
推理代码
from PIL import Image
import requests
from modelscope import snapshot_download
from transformers import AutoModelForCausalLM
from transformers import AutoProcessor model_id = snapshot_download("LLM-Research/Phi-3-vision-128k-instruct" )model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto")processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) messages = [ {"role": "user", "content": "<|image_1|>\n图片里面有什么?"}, {"role": "assistant", "content": "该图表显示了同意有关会议准备情况的各种陈述的受访者的百分比。它显示了五个类别:“有明确和预先定义的会议目标”、“知道在哪里可以找到会议所需的信息”、“在受邀时了解我的确切角色和职责”、“拥有管理工具” 诸如记笔记或总结之类的管理任务”,以及“有更多的专注时间来充分准备会议”。每个类别都有一个关联的条形图,指示一致程度,按 0% 到 100% 的范围进行衡量。"}, {"role": "user", "content": "提供富有洞察力的问题来引发讨论。"}
] url = "https://assets-c4akfrf5b4d3f4b7.z01.azurefd.net/assets/2024/04/BMDataViz_661fb89f3845e.png"
image = Image.open(requests.get(url, stream=True).raw) prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)inputs = processor(prompt, [image], return_tensors="pt").to("cuda:0") generation_args = { "max_new_tokens": 500, "temperature": 0.0, "do_sample": False,
} generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args) # remove input tokens
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] print(response)
显存占用:
跨平台推理(Phi-3-medium-4k-instruct-onnx-cpu)
配置:
step1: 下载模型
git clone https://www.modelscope.cn/LLM-Research/Phi-3-medium-4k-instruct-onnx-cpu.git
step2:安装依赖
pip install --pre onnxruntime-genai
step3:运行模型
curl https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi3-qa.py -o phi3-qa.py
python phi3-qa.py -m Phi-3-medium-4k-instruct-onnx-cpu/cpu-int4-rtn-block-32-acc-level-4
体验对话效果
模型微调
SWIFT已经支持Phi3系列模型的微调,包括纯文本模型如Phi3-mini-128k-instruct、Phi3-small-128k-instruct、Phi3-middle-128k-instruct等,也包括了Phi3的多模态模型Phi-3-vision-128k-instruct。
下面以多模态模型为例给出微调最佳实践:
# Experimental environment: 4 * A100
# 4 * 18GB GPU memory
nproc_per_node=4PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
torchrun \--nproc_per_node=$nproc_per_node \--master_port 29500 \llm_sft.py \--model_type phi3-vision-128k-instruct \--model_revision master \--sft_type lora \--tuner_backend peft \--template_type AUTO \--dtype AUTO \--output_dir output \--ddp_backend nccl \--dataset coco-en-2-mini \--train_dataset_sample -1 \--num_train_epochs 1 \--max_length 4096 \--check_dataset_strategy warning \--lora_rank 8 \--lora_alpha 32 \--lora_dropout_p 0.05 \--lora_target_modules ALL \--gradient_checkpointing true \--batch_size 1 \--weight_decay 0.1 \--learning_rate 1e-4 \--gradient_accumulation_steps $(expr 16 / $nproc_per_node) \--max_grad_norm 0.5 \--warmup_ratio 0.03 \--eval_steps 100 \--save_steps 100 \--save_total_limit 2 \--logging_steps 10 \--use_flash_attn true \--ddp_find_unused_parameters true \
我们使用训练时长约3小时,训练loss收敛情况如下:
显存占用:
Phi3-vision支持多个图片传入,在训练后我们可以使用ckpt进行多图片推理:
显存占用:
技术交流&资料
技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。
成立了算法面试和技术交流群,相关资料、技术交流&答疑,均可加我们的交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。
方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2040,备注:来自CSDN + 技术交流
通俗易懂讲解大模型系列
-
重磅消息!《大模型面试宝典》(2024版) 正式发布!
-
重磅消息!《大模型实战宝典》(2024版) 正式发布!
-
做大模型也有1年多了,聊聊这段时间的感悟!
-
用通俗易懂的方式讲解:大模型算法工程师最全面试题汇总
-
用通俗易懂的方式讲解:不要再苦苦寻觅了!AI 大模型面试指南(含答案)的最全总结来了!
-
用通俗易懂的方式讲解:我的大模型岗位面试总结:共24家,9个offer
-
用通俗易懂的方式讲解:大模型 RAG 在 LangChain 中的应用实战
-
用通俗易懂的方式讲解:ChatGPT 开放的多模态的DALL-E 3功能,好玩到停不下来!
-
用通俗易懂的方式讲解:基于扩散模型(Diffusion),文生图 AnyText 的效果太棒了
-
用通俗易懂的方式讲解:在 CPU 服务器上部署 ChatGLM3-6B 模型
-
用通俗易懂的方式讲解:ChatGLM3-6B 部署指南
-
用通俗易懂的方式讲解:使用 LangChain 封装自定义的 LLM,太棒了
-
用通俗易懂的方式讲解:基于 Langchain 和 ChatChat 部署本地知识库问答系统
-
用通俗易懂的方式讲解:Llama2 部署讲解及试用方式
-
用通俗易懂的方式讲解:一份保姆级的 Stable Diffusion 部署教程,开启你的炼丹之路
-
用通俗易懂的方式讲解:LlamaIndex 官方发布高清大图,纵览高级 RAG技术
-
用通俗易懂的方式讲解:为什么大模型 Advanced RAG 方法对于AI的未来至关重要?
-
用通俗易懂的方式讲解:基于 Langchain 框架,利用 MongoDB 矢量搜索实现大模型 RAG 高级检索方法
相关文章:

微软开源多模态大模型Phi-3-vision,微调实战来了
节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。 针对大模型& AIGC 技术趋势、大模型& AIGC 落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了…...

架构二。。
1、CAP 只能3选2 1)一致性(Consistency) 客户每次读都是返回最新的写操作结果 2)可用性(Availability) 非故障节点在合理的时间内返回合理的响应 3)分区容忍性(Partition Tolerance…...
《Google 软件工程》读书笔记
1. 写在前面 在图书馆瞎逛,偶然瞄见一本《Google 软件工程》Titus Winters, Tom Manshreck, Hyrum Wright 著。主要是在这一排的书架上就这本书看着挺新的(不知道为什么有一种喜欢看新书的情节),而且最近被领导老批评,…...

研发机构大数据迁移如何保障敏感数据不泄露
随着云计算和大数据技术的飞速进步,越来越多的企业正试图通过数据迁移来提升IT基础设施的效率,减少成本,并增强业务的灵活性。但是,这一过程并非没有它的挑战,尤其是在数据安全方面。数据在转移过程中可能会遭遇黑客攻…...

【Spring Security系列】权限之旅:SpringSecurity小程序登录深度探索
作者:后端小肥肠 创作不易,未经允许严禁转载。 姊妹篇: 【Spring Security系列】Spring SecurityJWTRedis实现用户认证登录及登出_spring security jwt 退出登录-CSDN博客 1. 前言 欢迎来到【Spring Security系列】!在当今数字化…...

【收录 Hello 算法】第 10 章 搜索
目录 第 10 章 搜索 本章内容 第 10 章 搜索 搜索是一场未知的冒险,我们或许需要走遍神秘空间的每个角落,又或许可以快速锁定目标。 在这场寻觅之旅中,每一次探索都可能得到一个未曾料想的答案。 本章内容 10.1 二分查找10.2 二…...
【MySQL精通之路】SQL优化(1)-查询优化(11)-多范围查询优化
主博客: 【MySQL精通之路】SQL优化(1)-查询优化-CSDN博客 上一篇: 【MySQL精通之路】SQL优化(1)-查询优化(10)-外部联接简化-CSDN博客 下一篇: 当基表很大且未存储在存储引擎的缓存中时,使用辅助索引上的范围扫描读取行可能会…...

Mysql之基本架构
1.Mysql简介 mysql是一种关系型数据库,由表结构来存储数据与数据之间的关系,同时为sql(结构化查询语句)来进行数据操作。 sql语句进行操作又分为几个重要的操作类型 DQL: Data Query Language 数据查询语句 DML: Data Manipulation Language 添加、删…...
Python学习---基于正则表达式的简单爬取电影下载信息案例
一、定义函数获取列表页的内容页地址 get_movie_links() 1、定义列表的地址 2、打开url地址,获取数据 3、解码获取到的数据 4、使用正则得到所有的影片内容也地址 4.1 遍历,取出内容页地址 4.2 拼接内容页地址 4.3 打开内容页地址 4.4 获…...

.DS_store文件
感觉mac里的这个.DS_store文件烦人,老是莫名其妙的出现,然后造成困扰 处理方式如下: import os pic_list os.listdir("./mask_pic/") print(len(pic_list)) # 从文件夹中删掉 if(".DS_Store" in pic_list):print(&quo…...

【webrtc】内置opus解码器的移植
m98 ,不知道是什么版本的opus,之前的交叉编译构建: 【mia】ffmpeg + opus 交叉编译 【mia】ubuntu22.04 : mingw:编译ffmpeg支持opus编解码 看起来是opus是1.3.1 只需要移植libopus和opus的webrtc解码部分即可。 linux构建的windows可运行的opus库 G:\NDDEV\aliply-0.4\C…...
Java注解:讲解Java注解(Annotations)的概念,使用,并展示如何自定义注解,甚至框架级别的使用说明
1. 注解的概念 1.1 介绍Annotation的基础概念 Java注解(Annotation)是Java 5.0及更高版本中引入的一种元数据(meta-data),即数据的数据。它以一种形式附着在代码中,但是对代码的运行不产生直接效果。注解可以用于创建文档、追踪代码依赖性、甚至执行编译期版错误检查等…...
二维矩阵乘法案例
二维矩阵相乘计算原理:第一个矩阵的每一行分别与第二个矩阵的每一列做向量点乘,将所得结果填入新矩阵相应的位置。 例如,给定矩阵 A [ [1, 2 ], [3, 4] ]和 B [ [5, 6 ], [7, 8] ],它们的乘积AB分别为: AB[ 0 ] [ 0…...

selenium安装出错
selenium安装步骤(法1): 安装失败法1 第一次实验,失败 又试了一次,失败 安装法2-失败: ERROR: Could not install packages due to an EnvironmentError: [WinError 5] 拒绝访问。: c:\\programdata\\a…...

前端中 dayjs 时间的插件使用(在vue 项目中)
Day.js中文网 这是dayjs的中文文档 里面包括了使用方法 下面我来详细介绍一下这个插件的使用 Day.js 可以运行在浏览器和 Node.js 中。 一般咱直接是 npm 安装 npm install dayjs 目前应该使用的是Es6 的语法 import dayjs from dayjs 当前时间 直接调用 dayjs() 将返回…...
tp5问题集记录 一
tp5问题集记录 一 前言车祸现场 前言 在写tp5接口的时候,发现model里面的参数查询出来之后,怎么改都不生效,也是自己不熟悉钻牛角尖了。 车祸现场 例如下面的代码使用model处理预处理 // SPUpublic function getSpuAttr($value, $data){$…...

AGI技术与原理浅析:曙光还是迷失?
前言:回顾以往博客文章,最近一次更新在2020-07,内容以机器学习、深度学习、CV、Slam为主,顺带夹杂个人感悟。笔者并非算法科班出身,本科学制药、研究生学金融,最原始的算法积累都来源于网络,当时…...

探秘机器学习经典:K-近邻算法(KNN)全解析
在浩瀚的机器学习宇宙中,K-近邻算法(K-Nearest Neighbors,简称KNN)如同一颗璀璨的明星,以其简洁直观的原理和广泛的应用范围,赢得了众多数据科学家的喜爱。今天,让我们一起揭开KNN的神秘面纱,深入探讨它的运作机制、优缺点、应用场景,以及如何在实际项目中灵活运用。 …...

数据可视化每周挑战——全国星巴克门店数据可视化
这是我国星巴克门店的位置,营业时间等数据。 1.导入需要用的库,同时设置绘图时用到的字体,同时防止绘图时负号无法正常显示的情况。 import pandas as pd from pyecharts.charts import Bar,Map,Line,Pie,Geo from pyecharts import option…...
【前端】js通过元素属性获取元素
【前端】js通过元素属性获取元素 <div for"hc_opportunity_config">aaaaa</div>//通过属性获取元素document.querySelector([for"hc_opportunity_config"]) document.querySelector([属性"属性值"])...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...

DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...